Advertisement

On the Parameterized Complexity of Colorful Components and Related Problems

  • Neeldhara MisraEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10979)

Abstract

The colorful components framework is motivated by applications emerging from computational biology. A vertex-colored graph G is said to be colorful if every color appears exactly once. The general goal is to remove a collection of edges from an undirected vertex-colored graph G such that in the resulting graph H all the connected components are colorful. We want H to optimize an appropriate objective function. Two natural functions involve deleting the smallest number of edges (which we refer to as Colorful Components) and maximizing the number of edges in the transitive closure of the remaining components (which we refer to as MEC).

These problems are well-studied from the point of view of classical complexity, approximation algorithms, and parameterized algorithms. We complement and improve on some of the results in the literature concerning MEC and Colorful Components. In the context of MEC, we demonstrate a linear kernel on trees and a randomized \(k^{O(k)}\) algorithm, where k is the standard parameter. Both of these results directly improve on previously known results about the problem. For the Colorful Components problem, we demonstrate a FPT algorithm for the vertex cover parameter, which is a well-motivated structural parameterization given that the problem is already para-NP-hard when parameterized by a deletion set to a disjoint union of stars.

References

  1. 1.
    Adamaszek, A., Blin, G., Popa, A.: Approximation and hardness results for the maximum edges in transitive closure problem. In: Kratochvíl, J., Miller, M., Froncek, D. (eds.) IWOCA 2014. LNCS, vol. 8986, pp. 13–23. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19315-1_2CrossRefGoogle Scholar
  2. 2.
    Adamaszek, A., Popa, A.: Algorithmic and hardness results for the colorful components problems. Algorithmica 73(2), 371–388 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Alon, N., Yuster, R., Zwick, U.: Color-coding. J. Assoc. Comput. Mach. 42(4), 844–856 (1995)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Avidor, A., Langberg, M.: The multi-multiway cut problem. Theor. Comput. Sci 377(1–3), 35–42 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bousquet, N., Daligault, J., Thomassé, S.: Multicut is FPT. In: Fortnow, L., Vadhan, S.P. (eds.) Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, pp. 459–468. ACM (2011)Google Scholar
  6. 6.
    Bruckner, S., Hüffner, F., Karp, R.M., Shamir, R., Sharan, R.: Topology-free querying of protein interaction networks. J. Comput. Biol. 17(3), 237–252 (2010)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bruckner, S., Hüffner, F., Komusiewicz, C., Niedermeier, R.: Evaluation of ILP-based approaches for partitioning into colorful components. In: Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933, pp. 176–187. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38527-8_17CrossRefGoogle Scholar
  8. 8.
    Bruckner, S., Hüffner, F., Komusiewicz, C., Niedermeier, R., Thiel, S., Uhlmann, J.: Partitioning into colorful components by minimum edge deletions. In: Kärkkäinen, J., Stoye, J. (eds.) CPM 2012. LNCS, vol. 7354, pp. 56–69. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31265-6_5CrossRefGoogle Scholar
  9. 9.
    Corel, E., Pitschi, F., Morgenstern, B.: A min-cut algorithm for the consistency problem in multiple sequence alignment. Bioinformatics 26(8), 1015–1021 (2010)CrossRefGoogle Scholar
  10. 10.
    Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-319-21275-3CrossRefzbMATHGoogle Scholar
  11. 11.
    Diestel, R.: Graph Theory. Springer Graduate Text GTM 173. Reinhard Diestel, July 2012Google Scholar
  12. 12.
    Dondi, R., Sikora, F.: Parameterized complexity and approximation issues for the colorful components problems. In: Beckmann, A., Bienvenu, L., Jonoska, N. (eds.) CiE 2016. LNCS, vol. 9709, pp. 261–270. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-40189-8_27CrossRefzbMATHGoogle Scholar
  13. 13.
    Fellows, M.R., Fertin, G., Hermelin, D., Vialette, S.: Upper and lower bounds for finding connected motifs in vertex-colored graphs. J. Comput. Syst. Sci. 77(4), 799–811 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Guillemot, S., Sikora, F.: Finding and counting vertex-colored subtrees. Algorithmica 65(4), 828–844 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Marx, D., Razgon, I.: Fixed-parameter tractability of multicut parameterized by the size of the cutset. SIAM J. Comput. 43(2), 355–388 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Zheng, C., Swenson, K., Lyons, E., Sankoff, D.: OMG! Orthologs in multiple genomes – competing graph-theoretical formulations. In: Przytycka, T.M., Sagot, M.-F. (eds.) WABI 2011. LNCS, vol. 6833, pp. 364–375. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23038-7_30CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Indian Institute of TechnologyGandhinagarIndia

Personalised recommendations