Median of 3 Permutations, 3-Cycles and 3-Hitting Set Problem

  • Robin Milosz
  • Sylvie HamelEmail author
  • Adeline Pierrot
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10979)


The median of permutations problem consists in finding a consensus permutation of a given set of m permutations of size n. This consensus represent the “closest” permutation to the given set under the Kendall-tau distance. Since the complexity of this problem is still unknown for sets of 3 permutations, in the following work, we investigate this specific case and show an interesting link with the 3-Hitting Set problem.



Thanks to Sarah Cohen-Boulakia, Alain Denise and Pierre Andrieu from the bioinformatic team of Laboratoire de Recherche Informatique of Université Paris-Sud for useful advices and thoughts. Thanks to Mitacs which made this collaboration possible through a Mitacs Globalink grant.


  1. 1.
    Ailon, N.: Aggregation of partial rankings, \(p\)-ratings and top-\(m\) lists. Algorithmica 57(2), 284–300 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ali, A., Meilă, M.: Experiments with Kemeny ranking: what works when? Math. Soc. Sci. 64, 28–40 (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bachmeier, G., Brandt, F., Geist, C., Harrenstein, P., Kardel, K., Peters, D., Seedig, H.G.: k-Majority Digraphs and the Hardness of Voting with a Constant Number of Voters arXiv: (2017)
  4. 4.
    Betzler, N., Bredereck, R., Niedermeier, R.: Theoretical and empirical evaluation of data reduction for exact Kemeny rank aggregation. Auton. Agent. Multi-Agent Syst. 28, 721–748 (2014)CrossRefGoogle Scholar
  5. 5.
    Biedl, T., Brandenburg, F.J., Deng, X.: Crossings and permutations. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 1–12. Springer, Heidelberg (2006). Scholar
  6. 6.
    Blin, G., Crochemore, M., Hamel, S., Vialette, S.: Median of an odd number of permutations. Pure Math. Appl. 21(2), 161–175 (2011)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Cohen-Boulakia, S., Denise, A., Hamel, S.: Using medians to generate consensus rankings for biological data. In: Bayard Cushing, J., French, J., Bowers, S. (eds.) SSDBM 2011. LNCS, vol. 6809, pp. 73–90. Springer, Heidelberg (2011). Scholar
  8. 8.
    Condorcet, M.J.: Essai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité des voix. Imprimerie Royale, 191 p. (1785)Google Scholar
  9. 9.
    Conitzer, V., Davenport, A., Kalagnanam, J.: Improved bounds for computing Kemeny rankings. In: Proceedings of AAAI - Volume 1, pp. 620–626 (2006)Google Scholar
  10. 10.
    Davenport, A., Kalagnanam, J.: A computational study of the Kemeny rule for preference aggregation. In: Proceedings of the 19th National Conference on Artificial Intelligence, AAAI 2004, pp. 697–702 (2004)Google Scholar
  11. 11.
    Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for the web. In: proceedings of the 10th WWW, pp. 613–622 (2001)Google Scholar
  12. 12.
    Fagin, R., Kumar, R., Mahdian, M., Sivakumar, D., Vee, E.: Comparing partial rankings. SIAM J. Discret. Math. 20(3), 628–648 (2006)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Guo, J., Niedermeier, R., Betzler, N., Fellows, M.R., Rosamond, F.A.: How similarity helps to efficiently compute Kemeny rankings. In: Proceedings of the 8th International Conference on Autonomous Agents and Multi-Agent Systems (2009)Google Scholar
  14. 14.
    Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations. IRSS, pp. 85–103. Springer, Boston (1972). Scholar
  15. 15.
    Karpinski, M., Schudy, W.: Faster algorithms for feedback arc set tournament, Kemeny rank aggregation and betweenness tournament. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010. LNCS, vol. 6506, pp. 3–14. Springer, Heidelberg (2010). Scholar
  16. 16.
    Kendall, M.: A new measure of rank correlation. Biometrika 30, 81–89 (1938)CrossRefGoogle Scholar
  17. 17.
    Young, H.P., Levenglick, A.: A consistent extension of Condorcet’s election principle. SIAM J. Appl. Math. 35(2), 285–300 (1978)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Mattei, N., Walsh, T.: PrefLib: a library for preferences In: Perny, P., Pirlot, M., Tsoukiàs, A. (eds.) ADT 2013. LNCS (LNAI), vol. 8176, pp. 259–270. Springer, Heidelberg (2013). Scholar
  19. 19.
    Milosz, R., Hamel, S.: Medians of permutations: building constraints. In: Govindarajan, S., Maheshwari, A. (eds.) CALDAM 2016. LNCS, vol. 9602, pp. 264–276. Springer, Cham (2016). Scholar
  20. 20.
    Nishimura, N., Simjour, N.: Parameterized enumeration of (locally-) optimal aggregations. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 512–523. Springer, Heidelberg (2013). Scholar
  21. 21.
    Schalekamp, F., van Zuylen, A.: Rank aggregation: together we’re strong. In: Proceedings of the 11th SIAM Workshop on Algorithm Engineering and Experiments, ALENEX, pp. 38–51 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Département d’Informatique et de Recherche OpérationnelleUniversité de MontréalQuébecCanada
  2. 2.Laboratoire de Recherche InformatiqueUniversité Paris-SudOrsayFrance

Personalised recommendations