Advertisement

Efficient Enumeration of Subgraphs and Induced Subgraphs with Bounded Girth

  • Kazuhiro KuritaEmail author
  • Kunihiro Wasa
  • Alessio Conte
  • Takeaki Uno
  • Hiroki Arimura
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10979)

Abstract

The girth of a graph is the length of its shortest cycle. Due to its relevance in graph theory, network analysis and practical fields such as distributed computing, girth-related problems have been object of attention in both past and recent literature. In this paper, we consider the problem of listing connected subgraphs with bounded girth. As a large girth is index of sparsity, this allows to extract sparse structures from the input graph. We propose two algorithms, for enumerating respectively vertex induced subgraphs and edge induced subgraphs with bounded girth, both running in O(n) amortized time per solution and using \(O(n^3)\) space. Furthermore, the algorithms can be easily adapted to relax the connectivity requirement and to deal with weighted graphs. As a byproduct, the second algorithm can be used to answer the well known question of finding the densest n-vertex graph(s) of girth k.

References

  1. 1.
    Alon, N., Hoory, S., Linial, N.: The moore bound for irregular graphs. Gr. Comb. 18(1), 53–57 (2002)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bollobás, B.: Extremal Graph Theory. Courier Corporation (2004)Google Scholar
  3. 3.
    Chandran, L.S.: A high girth graph construction. SIAM J. Discrete Math. 16(3), 366–370 (2003)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chang, H.-C., Lu, H.-I.: Computing the girth of a planar graph in linear time. SIAM J. Comput. 42(3), 1077–1094 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Conte, A., Kanté, M.M., Otachi, Y., Uno, T., Wasa, K.: Efficient enumeration of maximal k-degenerate subgraphs in a chordal graph. In: Cao, Y., Chen, J. (eds.) COCOON 2017. LNCS, vol. 10392, pp. 150–161. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-62389-4_13CrossRefGoogle Scholar
  6. 6.
    Conte, A., Kurita, K., Wasa, K., Uno, T.: Listing acyclic subgraphs and subgraphs of bounded girth in directed graphs. In: Gao, X., Du, H., Han, M. (eds.) COCOA 2017. LNCS, vol. 10628, pp. 169–181. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-71147-8_12CrossRefzbMATHGoogle Scholar
  7. 7.
    Ferreira, R., Grossi, R., Rizzi, R.: Output-sensitive listing of bounded-size trees in undirected graphs. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 275–286. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23719-5_24CrossRefGoogle Scholar
  8. 8.
    Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. SIAM J. Comput. 7(4), 413–423 (1978)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal independent sets. Inf. Process. Lett. 27(3), 119–123 (1988)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kurita, K., Wasa, K., Arimura, H., Uno, T.: Efficient enumeration of dominating sets for sparse graphs. arXiv preprint arXiv:1802.07863 (2018)
  11. 11.
    Lazebnik, F., Ustimenko, V.A., Woldar, A.J.: A new series of dense graphs of high girth. Bull. Am. Math. Soc. 32(1), 73–79 (1995)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Parter, M.: Bypassing Erdős’ girth conjecture: hybrid stretch and sourcewise spanners. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 608–619. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-43951-7_49CrossRefzbMATHGoogle Scholar
  13. 13.
    Read, R.C., Tarjan, R.E.: Bounds on backtrack algorithms for listing cycles, paths, and spanning trees. Networks 3(5), 237–252 (1975)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Shioura, A., Tamura, A., Uno, T.: An optimal algorithm for scanning all spanning trees of undirected graphs. SIAM J. Comput. 26(3), 678–692 (1997)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Wasa, K., Arimura, H., Uno, T.: Efficient enumeration of induced subtrees in a K-degenerate graph. In: Ahn, H.-K., Shin, C.-S. (eds.) ISAAC 2014. LNCS, vol. 8889, pp. 94–102. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-13075-0_8CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Kazuhiro Kurita
    • 1
    Email author
  • Kunihiro Wasa
    • 2
  • Alessio Conte
    • 2
  • Takeaki Uno
    • 2
  • Hiroki Arimura
    • 1
  1. 1.ISTHokkaido UniversitySapporoJapan
  2. 2.National Institute of InformaticsTokyoJapan

Personalised recommendations