On the Expected Number of Distinct Gapped Palindromic Factors

  • Philippe Duchon
  • Cyril NicaudEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10979)


An \(\alpha \)-gapped palindromic factor of a word is a factor of the form \(uv\overline{u}\), where \(\overline{u}\) is the reversal of u and where \(|uv|\le \alpha |u|\) for some fixed \(\alpha \ge 1\). We give an asymptotic estimate of the expected number of distinct palindromic factors in a random word for a memoryless source, where each letter is generated independently from the other, according to some fixed probability distribution on the alphabet.


  1. 1.
    Crochemore, M., Kolpakov, R., Kucherov, G.: Optimal bounds for computing \(\alpha \)-gapped repeats. In: Dediu, A.-H., Janoušek, J., Martín-Vide, C., Truthe, B. (eds.) LATA 2016. LNCS, vol. 9618, pp. 245–255. Springer, Cham (2016). Scholar
  2. 2.
    Dubhashi, D., Ranjan, D.: Balls and bins: a study in negative dependence. Random Struct. Algorithms 13(2), 99–124 (1998)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Duchon, P., Nicaud, C.: On the biased partial word collector problem. In: Bender, M.A., Farach-Colton, M., Mosteiro, M.A. (eds.) LATIN 2018. LNCS, vol. 10807, pp. 413–426. Springer, Cham (2018). Scholar
  4. 4.
    Duchon, P., Nicaud, C., Pivoteau, C.: Gapped pattern statistics. In: Kärkkäinen, J., Radoszewski, J., Rytter, W. (eds.) 28th Annual Symposium on Combinatorial Pattern Matching, CPM 2017, Warsaw, Poland, 4–6 July 2017. LIPIcs, vol. 78, pp. 21:1–21:12. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)Google Scholar
  5. 5.
    Dumitran, M., Gawrychowski, P., Manea, F.: Longest gapped repeats and palindromes. Discrete Math. Theoret. Comput. Sci. 19(4) (2017)Google Scholar
  6. 6.
    Gawrychowski, P., I, T., Inenaga, S., Köppl, D., Manea, F.: Tighter bounds and optimal algorithms for all maximal \(\alpha \)-gapped repeats and palindromes - finding all maximal \(\alpha \)-gapped repeats and palindromes in optimal worst case time on integer alphabets. Theory Comput. Syst. 62(1), 162–191 (2018)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kolpakov, R., Kucherov, G.: Searching for gapped palindromes. Theoret. Comput. Sci. 410(51), 5365–5373 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kolpakov, R., Podolskiy, M., Posypkin, M., Khrapov, N.: Searching of gapped repeats and subrepetitions in a word. J. Discrete Algorithms 46-47, 1–15 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    MacKay, D.J.: Information Theory, Inference and Learning Algorithms. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  10. 10.
    Motwani, R., Raghavan, P.: Randomized algorithms. ACM Comput. Surv. (CSUR) 28(1), 33–37 (1996)CrossRefGoogle Scholar
  11. 11.
    Rubinchik, M., Shur, A.M.: The number of distinct subpalindromes in random words. Fundam. Inform. 145(3), 371–384 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Rubinchik, M., Shur, A.M.: EERTREE: an efficient data structure for processing palindromes in strings. Eur. J. Comb. 68, 249–265 (2018)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Tanimura, Y., Fujishige, Y., I, T., Inenaga, S., Bannai, H., Takeda, M.: A faster algorithm for computing maximal \(\alpha \)-gapped repeats in a string. In: Iliopoulos, C.S., Puglisi, S.J., Yilmaz, E. (eds.) SPIRE 2015. LNCS, vol. 9309, pp. 124–136. Springer, Cham (2015). Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Univ. Bordeaux, LaBRI, UMR 5800TalenceFrance
  2. 2.CNRS, LaBRI, UMR 5800TalenceFrance
  3. 3.Université Paris-Est, LIGM (UMR 8049), CNRS, ENPC, ESIEE Paris, UPEMMarne-la-ValléeFrance

Personalised recommendations