Advertisement

Covering with Clubs: Complexity and Approximability

  • Riccardo Dondi
  • Giancarlo Mauri
  • Florian SikoraEmail author
  • Italo Zoppis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10979)

Abstract

Finding cohesive subgraphs in a network is a well-known problem in graph theory. Several alternative formulations of cohesive subgraph have been proposed, a notable example being s-club, which is a subgraph where each vertex is at distance at most s to the others. Here we consider the problem of covering a given graph with the minimum number of s-clubs. We study the computational and approximation complexity of this problem, when s is equal to 2 or 3. First, we show that deciding if there exists a cover of a graph with three 2-clubs is NP-complete, and that deciding if there exists a cover of a graph with two 3-clubs is NP-complete. Then, we consider the approximation complexity of covering a graph with the minimum number of 2-clubs and 3-clubs. We show that, given a graph \(G=(V,E)\) to be covered, covering G with the minimum number of 2-clubs is not approximable within factor \(O(|V|^{1/2 -\varepsilon })\), for any \(\varepsilon >0\), and covering G with the minimum number of 3-clubs is not approximable within factor \(O(|V|^{1 -\varepsilon })\), for any \(\varepsilon >0\). On the positive side, we give an approximation algorithm of factor \(2|V|^{1/2}\log ^{3/2} |V|\) for covering a graph with the minimum number of 2-clubs.

References

  1. 1.
    Alba, R.D.: A graph-theoretic definition of a sociometric clique. J. Math. Sociol. 3, 113–126 (1973)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Asahiro, Y., Doi, Y., Miyano, E., Samizo, K., Shimizu, H.: Optimal approximation algorithms for maximum distance-bounded subgraph problems. Algorithmica 80, 1834–1856 (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Balasundaram, B., Butenko, S., Trukhanov, S.: Novel approaches for analyzing biological networks. J. Comb. Optim. 10(1), 23–39 (2005)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bourjolly, J., Laporte, G., Pesant, G.: An exact algorithm for the maximum k-club problem in an undirected graph. Eur. J. Oper. Res. 138(1), 21–28 (2002)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cerioli, M.R., Faria, L., Ferreira, T.O., Martinhon, C.A.J., Protti, F., Reed, B.A.: Partition into cliques for cubic graphs: planar case, complexity and approximation. Discrete Appl. Math. 156(12), 2270–2278 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cerioli, M.R., Faria, L., Ferreira, T.O., Protti, F.: A note on maximum independent sets and minimum clique partitions in unit disk graphs and penny graphs: complexity and approximation. RAIRO Theor. Inf. Appl. 45(3), 331–346 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chang, M., Hung, L., Lin, C., Su, P.: Finding large k-clubs in undirected graphs. Computing 95(9), 739–758 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Desormeaux, W.J., Haynes, T.W., Henning, M.A., Yeo, A.: Total domination in graphs with diameter 2. J. Graph Theory 75(1), 91–103 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dumitrescu, A., Pach, J.: Minimum clique partition in unit disk graphs. Graphs Comb. 27(3), 399–411 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Garey, M.R., Johnson, D.S., Stockmeyer, L.J.: Some simplified NP-complete graph problems. Theor. Comput. Sci. 1(3), 237–267 (1976)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)zbMATHGoogle Scholar
  12. 12.
    Golovach, P.A., Heggernes, P., Kratsch, D., Rafiey, A.: Finding clubs in graph classes. Discrete Appl. Math. 174, 57–65 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hartung, S., Komusiewicz, C., Nichterlein, A.: Parameterized algorithmics and computational experiments for finding 2-clubs. J. Graph Algorithms Appl. 19(1), 155–190 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9(3), 256–278 (1974)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Proceedings of a symposium on the Complexity of Computer Computations, IBM Thomas J. Watson Research Center, Yorktown Heights, New York, 20–22 March 1972. The IBM Research Symposia Series, pp. 85–103. Plenum Press, New York (1972)Google Scholar
  16. 16.
    Komusiewicz, C.: Multivariate algorithmics for finding cohesive subnetworks. Algorithms 9(1), 21 (2016)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Komusiewicz, C., Sorge, M.: An algorithmic framework for fixed-cardinality optimization in sparse graphs applied to dense subgraph problems. Discrete Appl. Math. 193, 145–161 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Laan, S., Marx, M., Mokken, R.J.: Close communities in social networks: boroughs and 2-clubs. Social Netw. Anal. Min. 6(1), 20:1–20:16 (2016)CrossRefGoogle Scholar
  19. 19.
    Mokken, R.: Cliques, clubs and clans. Qual. Quant. Int. J. Methodol. 13(2), 161–173 (1979)CrossRefGoogle Scholar
  20. 20.
    Mokken, R.J., Heemskerk, E.M., Laan, S.: Close communication and 2-clubs in corporate networks: Europe 2010. Social Netw. Anal. Min. 6(1), 40:1–40:19 (2016)CrossRefGoogle Scholar
  21. 21.
    Pirwani, I.A., Salavatipour, M.R.: A weakly robust PTAS for minimum clique partition in unit disk graphs. Algorithmica 62(3–4), 1050–1072 (2012)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Schäfer, A., Komusiewicz, C., Moser, H., Niedermeier, R.: Parameterized computational complexity of finding small-diameter subgraphs. Optim. Lett. 6(5), 883–891 (2012)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Zoppis, I., Dondi, R., Santoro, E., Castelnuovo, G., Sicurello, F., Mauri, G.: Optimizing social interaction - a computational approach to support patient engagement. In: Zwiggelaar, R., Gamboa, H., Fred, A.L.N., i Badia, S.B. (eds.) Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2018) - Volume 5: HEALTHINF, Funchal, Madeira, Portugal, 19–21 January 2018, pp. 651–657. SciTePress (2018)Google Scholar
  24. 24.
    Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. Theory Comput. 3(1), 103–128 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Riccardo Dondi
    • 1
  • Giancarlo Mauri
    • 2
  • Florian Sikora
    • 3
    Email author
  • Italo Zoppis
    • 2
  1. 1.Università degli Studi di BergamoBergamoItaly
  2. 2.Università degli Studi di Milano-BicoccaMilanItaly
  3. 3.Université Paris-Dauphine, PSL Research University, CNRS UMR 7243, LAMSADEParisFrance

Personalised recommendations