Skip to main content

Cycle Height of Finite Automata

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10952))

Abstract

A nondeterministic finite automaton (NFA) A has cycle height \(\mathcal {K}\) if any computation of A can visit at most \(\mathcal {K}\) cycles, and A has finite cycle height if it has cycle height \(\mathcal {K}\) for some \(\mathcal {K}\). We give a polynomial time algorithm to decide whether an NFA has finite cycle height and, in the positive case, to compute its optimal cycle height. Nondeterministic finite automata of finite cycle height recognize the polynomial density regular languages.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    By non-equivalent cycles we mean cycles that are not permutations of each other. The notion will be defined formally in Sect. 2.

  2. 2.

    Strictly speaking, the t-tiered words are defined in [15] only with respect to a DFA.

References

  1. Banderier, C., Schwer, S.R.: Why Delannoy numbers? J. Statist. Plann. Inference 135, 40–54 (2004)

    Article  MathSciNet  Google Scholar 

  2. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  3. Gawrychowski, P., Krieger, D., Rampersad, N., Shallit, J.: Finding the growth rate of a regular or context-free language in polynomial time. Int. J. Found. Comput. Sci. 21(4), 597–618 (2010)

    Article  MathSciNet  Google Scholar 

  4. Goldstine, J., Kappes, M., Kintala, C.M.R., Leung, H., Malcher, A., Wotschke, D.: Descriptional complexity of machines with limited resources. J. Univ. Comput. Sci. 8(2), 193–234 (2002)

    MathSciNet  MATH  Google Scholar 

  5. Gruber, H.: Digraph complexity measures and applications in formal language theory. Discrete Math. Theor. Comput. Sci. 14(2), 189–204 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Gruber, H., Holzer, M.: From finite automata to regular expressions and back - a summary on descriptional complexity. Int. J. Found. Comput. Sci. 26(8), 1009–1040 (2015)

    Article  MathSciNet  Google Scholar 

  7. Han, Y.-S., Salomaa, A., Salomaa, K.: Ambiguity, nondeterminism and state complexity of finite automata. Acta Cybernetica 23, 141–157 (2017)

    Article  MathSciNet  Google Scholar 

  8. Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite automata - a survey. Inform. Comput. 209(3), 456–470 (2011)

    Article  MathSciNet  Google Scholar 

  9. Keeler, C., Salomaa, K.: Branching measures and nearly acyclic NFAs. In: Pighizzini, G., Câmpeanu, C. (eds.) DCFS 2017. LNCS, vol. 10316, pp. 202–213. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60252-3_16

    Chapter  Google Scholar 

  10. Kutrib, M., Pighizzini, G.: Recent trends in descriptional complexity of formal languages. Bull. EATCS (111) (2013)

    Google Scholar 

  11. Kutrib, M., Meckel, K., Wendlandt, M.: Parameterized prefix distance between regular languages. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp. 419–430. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04298-5_37

    Chapter  Google Scholar 

  12. Msiska, M., van Zijl, L.: Interpreting the subset construction using finite sublanguages. In: Proceedings of Prague Stringology Conference 2016, pp. 48–62 (2016)

    Google Scholar 

  13. Ahuja, R.K., Mehlhorn, K., Orlin, J.B., Tarjan, R.E.: Faster algorithms for the shortest path problem. J. ACM 37(2), 213–223 (1990)

    Article  MathSciNet  Google Scholar 

  14. Shallit, J.: Second Course in Formal Languages and Automata Theory. Cambridge University Press, New York (2009)

    MATH  Google Scholar 

  15. Szilard, A., Yu, S., Zhang, K., Shallit, J.: Characterizing regular languages with polynomial densities. In: Havel, I.M., Koubek, V. (eds.) MFCS 1992. LNCS, vol. 629, pp. 494–503. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55808-X_48

    Chapter  Google Scholar 

  16. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)

    Article  MathSciNet  Google Scholar 

  17. Tattersall, J.J.: Elementary Number Theory in Nine Chapters, Cambridge University Press (2005)

    Google Scholar 

  18. Wong, C.K., Maddocks, T.W.: A generalized Pascal’s triangle. Fibonacci Quart. 13(2), 134–136 (1975)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Research supported by NSERC grant OGP0147224.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Keeler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Keeler, C., Salomaa, K. (2018). Cycle Height of Finite Automata. In: Konstantinidis, S., Pighizzini, G. (eds) Descriptional Complexity of Formal Systems. DCFS 2018. Lecture Notes in Computer Science(), vol 10952. Springer, Cham. https://doi.org/10.1007/978-3-319-94631-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94631-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94630-6

  • Online ISBN: 978-3-319-94631-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics