Skip to main content

Transport Phenomena in Edible Films

  • Chapter
  • First Online:
Polymers for Food Applications

Abstract

Edible films and coatings help to control transfer of water vapor, oxygen, CO2, and active compounds between the food product and the environment providing additional protection during storage of fresh and processed food. Mass transfer phenomena are involved in these processes because edible films can act as functional interfaces between the food product and the environment. Edible films and coatings can also modify the heat transfer mechanism that takes place during food drying and frying, as well. In addition, they can function as controlled release packaging or active packaging—such packaging can be effectively impregnated with antimicrobial or antioxidant compounds, to deliver them over a stipulated period. Release and delivery of active compounds by these materials depend on the type of biopolymer that composes the film matrix and on the environmental conditions during storage. In a particular study, a turmeric dye extraction residue previously submitted to mechanical and chemical treatments was employed as coating in bananas. The treated turmeric residue coating effectively extended the coated banana shelf life by 4 days as compared to uncoated bananas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreu AS et al (2015) Antimicrobial nanostructured starch based films for packaging. Carbohydr Polym 129:127–134

    Article  PubMed  CAS  Google Scholar 

  • Adilah ZM et al (2018) Functional and antioxidant properties of protein-based films incorporated with mango kernel extract for active packaging. Food Hydrocoll 74:207–218

    Article  Google Scholar 

  • Albert S, Mittal GS (2002) Comparative evaluation of edible coatings to reduce fat uptake in a deep-fried cereal product. Food Res Int 35:445–458

    Article  CAS  Google Scholar 

  • Al-Hassan AA, Norziah MH (2012) Starch–gelatin edible films: water vapor permeability and mechanical properties as affected by plasticizers. Food Hydrocoll 26(1):108–117

    Article  CAS  Google Scholar 

  • Álvarez K, Famá L, Gutiérrez TJ (2017) Physicochemical, antimicrobial and mechanical properties of thermoplastic materials based on biopolymers with application in the food industry. In: Masuelli M, Renard D (eds) Advances in physicochemical properties of biopolymers: Part 1. Bentham Science, Sharjah. EE.UU. ISBN: 978–1–68108-454-1. eISBN: 978–1–68108-453-4, pp 358–400. https://doi.org/10.2174/9781681084534117010015

    Chapter  Google Scholar 

  • Álvarez K, Alvarez VA, Gutiérrez TJ (2018) Biopolymer composite materials with antimicrobial effects applied to the food industry. In: Thakur VK, Thakur MK (eds) Functional biopolymers. Springer International, Basel, pp 57–96. EE.UU. ISBN: 978-3-319-66416-3. eISBN: 978-3-319-66417-0. https://doi.org/10.1007/978-3-319-66417-0_3

    Chapter  Google Scholar 

  • Alves EJ (1999) The banana cultivation: technical, socio-economic and agro-industrial aspects. Embrapa-SPI; Cruz das Almas: Embrapa-CNPMF

    Google Scholar 

  • Alves VD et al (2010) Barrier properties of biodegradable composite films based on kappa-carrageenan/pectin blends and mica flakes. Carbohydr Polym 79(2):269–276

    Article  CAS  Google Scholar 

  • American Society for Testing and Materials—ASTM (2014) ASTM F1927—Standard test method for determination of oxygen gas transmission rate, permeability and permeance at controlled relative humidity through barrier materials using a coulometric detector. ASTM International, West Conshohocken, PA

    Google Scholar 

  • Andrade-Mahecha MM et al (2012) Physical–chemical, thermal, and functional properties of achira (Canna indica L.) flour and starch from different geographical origin. Starch-Starke 64:348–358

    Article  CAS  Google Scholar 

  • Angellier-Coussy H et al (2011) Influence of processing temperature on the water vapor transport properties of wheat gluten based agromaterials. Ind Crop Prod 33(2):457–461

    Article  CAS  Google Scholar 

  • Araújo-Farro PC et al (2010) Development of films based on quinoa (Chenopodium quinoa, Willdenow) starch. Carbohydr Polym 81(4):839–848

    Article  CAS  Google Scholar 

  • Arutselvi R et al (2012) Phytochemical screening and comparative study of anti microbial activity of leaves and rhizomes of turmeric varieties. Asian J Plant Sci Res 2(2):212–219

    Google Scholar 

  • Arvanitoyannis S, Kassaveti A (2009) HACCP and ISO 22000—a comparison of the two systems. In: Arvanitoyannis IS (ed) HACCP and ISO 22000: application to foods of animal origin. Wiley-Blackwell, Oxford, pp 3–45

    Chapter  Google Scholar 

  • Assis RQ et al (2017) Active biodegradable cassava starch films incorporated lycopene nanocapsules. Ind Crop Prod 109:818–827

    Article  CAS  Google Scholar 

  • Aulin C et al (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17(3):559–574

    Article  CAS  Google Scholar 

  • Ayranci E, Tunc S (2003) A method for the measurement of the oxygen permeability and the development of edible films to reduce the rate of oxidative reactions in fresh foods. Food Chem 80(3):423–431

    Article  CAS  Google Scholar 

  • Bai J et al (2002) Alternatives to shellac coatings provide comparable gloss, internal gas modification, and quality for ‘Delicious’ apple fruit. Hort Sci 37(3):559–563

    Google Scholar 

  • Balaguer MP et al (2013) Antifungal properties of gliadin films incorporating cinnamaldehyde and application in active food packaging of bread and cheese spread foodstuffs. Int J Food Microbiol 166(3):369–377

    Article  PubMed  CAS  Google Scholar 

  • Baldwin EA et al (2011) Edible coatings and films to improve food quality. CRC, Boca Raton, FL

    Google Scholar 

  • Barry BW, Meyer MC (1979) The rheological properties of carbopol gels II. Oscillatory properties of carbopol gels. Int J Pharm 2(1):27–40

    Article  CAS  Google Scholar 

  • Behera S et al (2014) Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew Sust Energ Rev 36:91–106

    Article  CAS  Google Scholar 

  • Berens AR, Hopfenberg HB (1978) Diffusion and relaxation in glassy polymer powders. Separation of diffusion and relaxation parameters. Polymer 19(5):489–496

    Article  CAS  Google Scholar 

  • Bourlieu C et al (2009) Edible moisture barriers: how to assess of their potential and limits in food products shelf-life extension? Crit Rev Food Sci Nutr 49:474–499

    Article  PubMed  CAS  Google Scholar 

  • Bourtoom T et al (2006) Effect of plasticizer type and concentration on the properties of edible films from water-soluble fish proteins in surimi wash-water. Food Sci Technol Int 12(2):119–126

    Article  CAS  Google Scholar 

  • Bracone M, Merino D, González J, Alvarez VA, Gutiérrez TJ (2016) Nanopackaging from natural fillers and biopolymers for the development of active and intelligent films. In: Ikram S, Ahmed S (eds) Natural polymers: derivatives, blends and composites. Nova Science, New York, pp 119–155 EE.UU. ISBN: 978-1-63485-831-1

    Google Scholar 

  • Buonocore GG et al (2003) Modeling the lysozyme release kinetics from antimicrobial films intended for food packaging applications. J Food Sci 68(4):1365–1370

    Article  CAS  Google Scholar 

  • Buonocore GG et al (2003b) A general approach to describe the antimicrobial agent release from highly swell able films intended for food packaging applications. J Control Release 90:97–107

    Article  PubMed  CAS  Google Scholar 

  • Buonocore GG et al (2005) Mono-and multilayer active films containing lysozyme as antimicrobial agent. Innov Food Sci Emerg Technol 6(4):459–464

    Article  CAS  Google Scholar 

  • Butler BL et al (1996) Mechanical and barrier properties of edible chitosan films as affected by composition and storage. J Food Sci 61:953–955

    Article  CAS  Google Scholar 

  • Cagri A et al (2004) Antimicrobial edible films and coatings. J Food Prot 67(4):833–848

    Article  PubMed  CAS  Google Scholar 

  • Cano MP et al (1997) Differences among Spanish and Latin-American banana cultivars: morphological, chemical and sensory characteristics. Food Chem 59:411–419

    Article  CAS  Google Scholar 

  • Cazón P et al (2017) Polysaccharide-based films and coatings for food packaging: a review. Food Hydrocoll 68:136–148

    Article  CAS  Google Scholar 

  • Cha DS, Chinnan MS (2004) Biopolymer-based antimicrobial packaging: a review. Crit Rev Food Sci Nutr 44(4):223–237

    Article  PubMed  CAS  Google Scholar 

  • Chi-Zhang YD et al (2004) Effective control of Listeria monocytogenes by combination of nisin formulated and slowly released into a broth system. Int J Food Microbiol 90:15–22

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove J (2008) Emerging edible films: dissolving strips have made minor supplement inroads, but advancing technologies point to progress. Available online at: http://www.nutraceuticalsworld.com/contents/view_online-exclusives/2008-01-01/emerging708 edible-films/. Accessed 10 Jan 2018

    Google Scholar 

  • Crank J (1955) The mathematics of diffusion. Clarendon Press, Oxford, pp 56–60

    Google Scholar 

  • Cremasco, MA (1998) Fundamentos de transferência de massa. Editora da UNICAMP

    Google Scholar 

  • Cutter CN, Sumner SS (2002) Application of edible coatings on muscle foods. In: Gennedios A (ed) Protein-based films and coatings. CRC, Boca Raton, FL, pp 467–484

    Google Scholar 

  • Dashipour A et al (2014) Physical, antioxidant and antimicrobial characteristics of carboxymethylcellulose edible film cooperated with clove essential oil. Zahedan J Res Med Sci 16:34–42

    Google Scholar 

  • Daudt RM et al (2017) Development of edible films based on Brazilian pine seed (Araucaria angustifolia) flour reinforced with husk powder. Food Hydrocoll 71:60–67

    Article  CAS  Google Scholar 

  • Davoodi M et al (2017) Preparation and characterization of potato starch-thymol dispersion and film as potential antioxidant and antibacterial materials. Int J Biol Macromol 104:173–179

    Article  PubMed  CAS  Google Scholar 

  • Debeaufort FJ et al (1998) Edible films and coatings: tomorrow’s packaging: a review. Crit Rev Food Sci Nutr 38:299–313

    Article  PubMed  CAS  Google Scholar 

  • Debeaufort F et al (2000) Lipid hydrophobicity and physical state effects on the properties of bilayer edible films. J Membr Sci 180(1):47–55

    Article  CAS  Google Scholar 

  • Despond S et al (2005) Barrier properties of paper-chitosan and paper-chitosan-carnauba wax films. J Appl Polym Sci 98:704–710

    Article  CAS  Google Scholar 

  • Devlieghere F et al (2004) Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiol 21(6):703–714

    Article  CAS  Google Scholar 

  • Dias AB et al (2010) Biodegradable films based on rice starch and rice flour. J Cereal Sci 51(2):213–219

    Article  CAS  Google Scholar 

  • Dole P et al (2004) Gas transport properties of starch based films. Carbohydr Polym 58:335–343

    Article  CAS  Google Scholar 

  • Duan J et al (2010) Quality enhancement in fresh and frozen lingcod (Ophiodon elongates) fillets by employment of fish oil incorporated chitosan coatings. Food Chem 119(2):524–532

    Article  CAS  Google Scholar 

  • Dutta PK et al (2009) Perspectives for chitosan based antimicrobial films in food applications. Food Chem 114(4):1173–1182

    Article  CAS  Google Scholar 

  • Ehivet FE et al (2011) Characterization and antimicrobial activity of Sweetpotato starch-based edible film containing Origanum (Thymus capitatus) oil. J Food Sci 76(1):C178–C184

    Article  PubMed  CAS  Google Scholar 

  • Embuscado ME, Huber KC (2009) Edible films and coatings for food applications. Springer, New York, NY, pp 213–214

    Google Scholar 

  • Emiroğlu ZK et al (2010) Antimicrobial activity of soy edible films incorporated with thyme and oregano essential oils on fresh ground beef patties. Meat Sci 86(2):283–288

    Article  PubMed  CAS  Google Scholar 

  • Faisant N et al (2002) PLGA-based microparticles: elucidation of mechanisms and a new, simple mathematical model quantifying drug release. Eur J Pharm Sci 15(4):355–366

    Article  PubMed  CAS  Google Scholar 

  • Flores S et al (2007) Mass transport properties of tapioca-based active edible films. J Food Eng 81(3):580–586

    Article  CAS  Google Scholar 

  • Galdeano MC et al (2009) Effects of plasticizers on the properties of oat starch films. Mater Sci Eng C 9:532–538

    Article  CAS  Google Scholar 

  • Ganiari S et al (2017) Edible and active films and coatings as carriers of natural antioxidants for lipid food. Trends Food Sci Technol 68:70–82

    Article  CAS  Google Scholar 

  • Garcia MA, Zaritzky N (2017) Transport phenomena in films and coatings including their mathematical modeling. In: Montero García MP, Gómez-Guillén MC, López-Caballero ME, Barbosa-Canóvas GV (eds) Edible films and coatings. CRC, Boca Raton, pp 25–53

    Google Scholar 

  • Garcia MA et al (2002) Edible coatings from cellulose derivatives to reduce oil uptake in fried products. Innov Food Sci Emerg Technol 3:391–397

    Article  CAS  Google Scholar 

  • Gaudin S et al (2000) Antiplasticisation and oxygen permeability of starch–sorbitol films. Carbohydr Polym 43:33–37

    Article  CAS  Google Scholar 

  • Gennadios A, Weller CL (1990) Edible films and coatings from wheat and corn proteins. Food Technol 44(10):63–69

    CAS  Google Scholar 

  • Gennadios A et al (1994) Edible coatings and films based on proteins. In: Krochta JM, Baldwin EA, Nisperos-Carriedo M (eds) Edible coatings and films to improve food quality. Technomic, Lancaster, pp 210–278

    Google Scholar 

  • Gómez-Estaca J et al (2010) Biodegradable gelatin–chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food Microbiol 27(7):889–896

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Estaca J et al (2014) Advances in antioxidant active food packaging. Trends Food Sci Technol 35(1):42–51

    Article  CAS  Google Scholar 

  • Gontard N et al (1996) Influence of relative humidity and film composition on oxygen and carbon dioxide permeability’s edible films. J Agric Food Chem 44:1064–1069

    Article  CAS  Google Scholar 

  • Grinberg VY, Tolstoguzov VB (1997) Thermodynamic incompatibility of proteins and polysaccharides in solutions. Food Hydrocoll 11:145–158

    Article  CAS  Google Scholar 

  • Guilbert S (1986) Technology and application of edible protective films. In: Mathlouthi M (ed) Food packaging and preservation: theory and practice. Elsevier, Applied Science, London, pp 371–394

    Google Scholar 

  • Guo Z et al (2008) The influence of molecular weight of quaternized chitosan on antifungal activity. Carbohydr Polym 71(4):694–697

    Article  CAS  Google Scholar 

  • Gutiérrez TJ (2017a) Surface and nutraceutical properties of edible films made from starchy sources with and without added blackberry pulp. Carbohydr Polym 165:169–179. https://doi.org/10.1016/j.carbpol.2017.02.016

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez TJ (2017b) Chitosan applications for the food industry. In: Ahmed S, Ikram S (eds) Chitosan: derivatives, composites and applications. Wiley-Scrivener, Beverly, MA, pp 183–232. EE.UU. ISBN: 978-1-119-36350-7. https://doi.org/10.1002/9781119364849.ch8

    Chapter  Google Scholar 

  • Gutiérrez TJ (2018) Active and intelligent films made from starchy sources/blackberry pulp. J Polym Environ 15:445–448. https://doi.org/10.1007/s10924-017-1134-y

    Article  CAS  Google Scholar 

  • Gutiérrez TJ, Álvarez K (2017) Transport phenomena in biodegradable and edible films. In: Masuelli M (ed) Biopackaging. CRC, Boca Raton, FL, pp 58–89

    Google Scholar 

  • Gutiérrez TJ, Alvarez VA (2017a) Cellulosic materials as natural fillers in starch-containing matrix-based films: a review. Polym Bull 74(6):2401–2430. https://doi.org/10.1007/s00289-016-1814-0

    Article  CAS  Google Scholar 

  • Gutiérrez TJ, Alvarez VA (2017b) Eco-friendly films prepared from plantain flour/PCL blends under reactive extrusion conditions using zirconium octanoate as a catalyst. Carbohydr Polym 178:260–269. https://doi.org/10.1016/j.carbpol.2017.09.026

    Article  PubMed  CAS  Google Scholar 

  • Gutiérrez TJ, Alvarez VA (2017c) Films made by blending poly(ε-caprolactone) with starch and flour from Sagu rhizome grown at the Venezuelan amazons. J Polym Environ 25(3):701–716. https://doi.org/10.1007/s10924-016-0861-9

    Article  CAS  Google Scholar 

  • Gutiérrez MQ et al (2012) Carboxymethylcellulose-montmorillonite nanocomposite films activated with murta (Ugni molinae Turcz) leaves extract. Carbohydr Polym 87:1495–1502

    Article  CAS  Google Scholar 

  • Gutiérrez TJ, Morales NJ, Pérez E, Tapia MS, Famá L (2015) Physico-chemical study of edible films based on native and phosphating cush-cush yam and cassava starches. Food Packaging Shelf Life 3:1–8. https://doi.org/10.1016/j.fpsl.2014.09.002

    Article  Google Scholar 

  • Gutiérrez TJ, Tapia MS, Pérez E, Famá L (2015a) Structural and mechanical properties of native and modified cush-cush yam and cassava starch edible films. Food Hydrocoll 45:211–217. https://doi.org/10.1016/j.foodhyd.2014.11.017

    Article  CAS  Google Scholar 

  • Gutiérrez TJ, Tapia MS, Pérez E, Famá L (2015b) Edible films based on native and phosphated 80:20 waxy:normal corn starch. Starch Stärke 67(1–2):90–97. https://doi.org/10.1002/star.201400164

    Article  CAS  Google Scholar 

  • Gutiérrez TJ, Guzmán R, Medina Jaramillo C, Famá L (2016a) Effect of beet flour on films made from biological macromolecules: native and modified plantain flour. Int J Biol Macromol 82:395–403. https://doi.org/10.1016/j.ijbiomac.2015.10.020

    Article  PubMed  CAS  Google Scholar 

  • Gutiérrez TJ, Suniaga J, Monsalve A, García NL (2016b) Influence of beet flour on the relationship surface-properties of edible and intelligent films made from native and modified plantain flour. Food Hydrocoll 54:234–244. https://doi.org/10.1016/j.foodhyd.2015.10.012

    Article  CAS  Google Scholar 

  • Gutiérrez TJ, González Seligra P, Medina Jaramillo C, Famá L, Goyanes S (2017) Effect of filler properties on the antioxidant response of thermoplastic starch composites. In: Thakur VK, Thakur MK, Kessler MR (eds) Handbook of composites from renewable materials. Wiley-Scrivener, Beverly, MA, pp 337–370. EE.UU. ISBN: 978–1–119-22362-7. https://doi.org/10.1002/9781119441632.ch14

    Chapter  Google Scholar 

  • Han JH, Scanlon MG (2014) Mass transfer of gas and solute through packaging materials. In: Han JH (ed) Innovations in food packaging, 2nd edn. Academic Press, London, pp 37–49

    Chapter  Google Scholar 

  • Han SM et al (2006) Determining hardness of thin films in elastically mismatched film-on-substrate systems using nanoindentation. Acta Mater 54(6):1571–1581

    Article  CAS  Google Scholar 

  • He L et al (2011) Modification of collagen with a natural cross-linker, procyanidin. Int J Biol Macromol 48(2):354–359

    Article  PubMed  CAS  Google Scholar 

  • Hernández-Izquierdo VM, Krochta JM (2008) Thermoplastic processing of proteins for film formation—a review. J Food Sci 73(2)

    Google Scholar 

  • Hernandez-Muñoz P et al (2002) Simple method for the selection of the appropriate food simulant for the evaluation of a specific food/packaging interaction. Food Addit Contam 19(S1):192–200

    Article  PubMed  CAS  Google Scholar 

  • Hong SI, Krochta JM (2006) Oxygen barrier performance of whey protein coated plastic films as affectes by temperature, relative humidity, base film and protein type. J Food Eng 77:736–745

    Article  CAS  Google Scholar 

  • Hosokawa J et al (1990) Biodegradable film derived from chitosan and homogeneized cellulose. Ind Eng Chem Res 29:800–805

    Article  CAS  Google Scholar 

  • Ibarz A, Barbosa-Cánovas GV (2002) Unit operations in food engineering. CRC Press, Boca Raton 889 p

    Google Scholar 

  • Jain RA (2000) The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 21(23):2475–2490

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Li Y (2001) Effects of chitosan coating on postharvest life and quality of longan fruit. Food Chem 73:139–143

    Article  CAS  Google Scholar 

  • Jiang T et al (2012) Novel disease-modifying therapies for Alzheimer's disease. J Alzheimers Dis 31:475–492

    Article  PubMed  CAS  Google Scholar 

  • Jin T, Zhang H (2008) Biodegradable polylactic acid polymer with nisin for use in antimicrobial food packaging. J Food Sci 73(3):M127–M134

    Article  PubMed  CAS  Google Scholar 

  • Johansson F, Leufven A (1995) Food packaging polymer as barrier against aroma vapor and oxygen in fat or humid environments. In: Ackermann P, Tagerstand M, Ohesson T (eds) Food and packaging materials: chemical interactions. The Royal Society of Chemistry, Cambrige

    Google Scholar 

  • Jongjareonrak A et al (2006) Characterization of edible films from skin gelatin of brown stripe red snapper and big eye snapper. Food Hydrocoll 20:492–501

    Article  CAS  Google Scholar 

  • Kamil JY et al (2002) Antioxidative activity of chitosans of different viscosity in cooked comminuted flesh of herring (Clupea harengus). Food Chem 79(1):69–77

    Article  CAS  Google Scholar 

  • Kays SJ (1997) Stress in harvested products. In: Kays SJ (ed) Postharvest physiology of perishable plant products. Exon Press, Athens, GA, pp 335–407

    Google Scholar 

  • Kester JJ, Fennema OR (1986) Edible films and coatings: a review. Food Technol 40(12):47–59

    CAS  Google Scholar 

  • Kofinas P et al (1994) Gas permeability of polyethylene/poly (ethylene-propylene) semicrystalline diblock copolymers. Polymer 35:1229–1235

    Article  CAS  Google Scholar 

  • Kulp K (2011) Batters and breadings in food processing. Academic Press, New York

    Google Scholar 

  • Lacoste A et al (2005) Advancing controlled release packaging through smart blending. Food Packaging Technol Sci 18:77–87

    Article  CAS  Google Scholar 

  • Langer R, Peppas NA (1983) Chemical and physical structure of polymers as carriers for controlled release of bioactive agents: a review. Macromol Chem Phys C23:61–126

    Article  CAS  Google Scholar 

  • Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101(7):1869–1880

    Article  PubMed  CAS  Google Scholar 

  • Lee SY et al (2002) Whey-protein-coated peanuts assessed by sensory evaluation and static headspace gas chromatography. J Food Sci 67:1212–1218

    Article  CAS  Google Scholar 

  • Leelaphiwat P et al (2017) Effects of packaging materials on the aroma stability of Thai ‘tom yam’ seasoning powder as determined by descriptive sensory analysis and gas chromatography–mass spectrometry. J Sci Food Agric 97:1854–1860

    Article  PubMed  CAS  Google Scholar 

  • Liang J et al (2017) Encapsulation of epigallocatechin gallate in zein/chitosan nanoparticles for controlled applications in food systems. Food Chem 231:19–24

    Article  PubMed  CAS  Google Scholar 

  • Liu F et al (2010) Optimizing color and lipid stability of beef patties with a mixture design incorporating with tea catechins, carnosine and atocopherol. J Food Eng 98:170–177

    Article  CAS  Google Scholar 

  • Liu J et al (2017a) Effect of protocatechuic acid incorporation on the physical, mechanical, structural and antioxidant properties of chitosan film. Food Hydrocoll 73:90–100

    Article  CAS  Google Scholar 

  • Liu J et al (2017b) Physical, mechanical and antioxidant properties of chitosan films grafted with different hydroxybenzoic acids. Food Hydrocoll 71:176–186

    Article  CAS  Google Scholar 

  • López-Carballo G et al (2012) Active antimicrobial food and beverage packaging. In: Emerging food packaging technologies, pp 27–54

    Chapter  Google Scholar 

  • Luchese CL et al (2017) Starch content affects physicochemical properties of corn and cassava starch-based films. Ind Crop Prod 109:619–626

    Article  CAS  Google Scholar 

  • Ma X et al (2017) Hydrophilic modification of cellulose nanocrystals improves the physicochemical properties of cassava starch-based nanocomposite films. LWT Food Sci Technol 86:318–326

    Article  CAS  Google Scholar 

  • Malhotra B et al (2015) Antimicrobial food packaging: potential and pitfalls. Front Microbiol 6:611

    Article  PubMed  PubMed Central  Google Scholar 

  • Mallikarjunan P et al (1997) Edible coatings for deep-fat frying of starchy products. Lebensm Wiss u-Tecnol 30:709–714

    Article  CAS  Google Scholar 

  • Maniglia BC et al (2014) Development of bioactive edible film from turmeric dye solvent extraction residue. LWT Food Sci Technol 56(2):269–277

    Article  CAS  Google Scholar 

  • Maniglia BC et al (2015) Turmeric dye extraction residue for use in bioactive film production: optimization of turmeric film plasticized with glycerol. LWT Food Sci Technol 64(2):1187–1195

    Article  CAS  Google Scholar 

  • Maniglia BC et al (2017) Bioactive films based on babassu mesocarp flour and starch. Food Hydrocoll 70:383–391

    Article  CAS  Google Scholar 

  • Martelli MR et al (2005) Efeito de Coberturas a Base de Gelatina na Fritura de Nuggets In: 5° Congreso IberoAmericano de Ingeniería de Alimentos Puerto Vallarta. Anales del 5° Congreso IberoAmericano de Ingeniería de Alimentos

    Google Scholar 

  • Martelli MR et al (2008) Reduction of oil uptake in deep fat fried chicken nuggets using edible coatings based on cassava starch and methylcellulose. Ital J Food Sci 20(1):111–117

    CAS  Google Scholar 

  • Martelli-Tosi M et al (2017) Chemical treatment and characterization of soybean straw and soybean protein isolate/straw composite films. Carbohydr Polym 157:512–520

    Article  PubMed  CAS  Google Scholar 

  • Martinez DST, Alves OL (2013) Interação de nanomateriais com biossistemas e a nanotoxicologia: na direção de uma regulamentação. Ciência e Cultura 65(3):32–36

    Article  Google Scholar 

  • Mastromatteo M et al (2010) Advances in controlled release devices for food packaging applications. Trends Food Sci Technol 21:591–598

    Article  CAS  Google Scholar 

  • Mate JI, Krochta JM (1996) Comparison of oxygen and water vapor permeabilities of whey protein isolate and -lactoglobulin edible films. J Agric Food Chem 44(10):3001–3004

    Article  CAS  Google Scholar 

  • Mchugh TH, Krochta JM (1994a) Milk-protein based films and coatings. Food Technol 48(1):97–103

    CAS  Google Scholar 

  • Mchugh TH, Krochta JM (1994b) Sorbitol vs glycerol whey protein edible films: integrated oxygen permeability and tensile property evaluation. J Agric Food Chem 42:841–845

    Article  CAS  Google Scholar 

  • Mchugh TH, Krochta JM (1994c) Water vapor permeability properties of edible whey protein-lipid emulsion films. J Am Oil Chem Soc 71(3):307–312

    Article  CAS  Google Scholar 

  • Mchugh TH et al (1993) Hydrophilic edible films: modified procedure for water vapor permeability and explanation of thickness effects. J Food Sci 58:899–903

    Article  CAS  Google Scholar 

  • Menon VP, Sudheer AR (2007) Antioxidant and anti-inflammatory properties of curcumin. Adv Exp Med Biol 595:105–125

    Article  PubMed  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428

    Article  CAS  Google Scholar 

  • Miller KS, Krochta JM (1997) Oxygen and aroma barrier properties of edible films: a review. Trends Food Sci Technol 8:228–237

    Article  CAS  Google Scholar 

  • Muñoz-Bonilla A, Fernández-García M (2012) Polymeric materials with antimicrobial activity. Prog Polym Sci 37(2):281–339

    Article  CAS  Google Scholar 

  • No HK et al (2007) Applications of chitosan for improvement of quality and shelf life of foods: a review. J Food Sci 72(5):R87–R100

    Article  PubMed  CAS  Google Scholar 

  • Oms-Oliu GO et al (2008) Edible coatings with antibrowning agents to maintain sensory quality and antioxidant properties of fresh-cut pears. Postharvest Biol Technol 50(1):87–94

    Article  CAS  Google Scholar 

  • Ouattara B et al (2000) Inhibition of surface spoilage bacteria in processed meats by application of antimicrobial films prepared with chitosan. Int J Food Microbiol 62:139–148

    Article  CAS  Google Scholar 

  • Ozdemir M, Floros JD (2004) Active food packaging technologies. Crit Rev Food Sci Nutr 44(3):185–193

    Article  PubMed  CAS  Google Scholar 

  • Paramasivam M et al (2009) High-performance thin layer chromatographic method for quantitative determination of curcuminoids in Curcuma longa germplasm. Food Chem 113:640–644

    Article  CAS  Google Scholar 

  • Pelissari FM et al (2013) Comparative study on the properties of flour and starch films of plantain bananas (Musa paradisiaca). Food Hydrocoll 30(2):681–690

    Article  CAS  Google Scholar 

  • Peppas N (1984) In: Anderson JM, Kim SW (eds) Recent advances in drug delivery systems. Plenum Press, New York, pp 279–298

    Chapter  Google Scholar 

  • Pereira VA Jr et al (2015) Active chitosan/PVA films with anthocyanins from brassica oleraceae (red cabbage) as time–temperature indicators for application in intelligent food packaging. Food Hydrocoll 43:180–188

    Article  CAS  Google Scholar 

  • Piñeros-Hernandez D et al (2017) Edible cassava starch films carrying rosemary antioxidant extracts for potential use as active food packaging. Food Hydrocoll 63:488–495

    Article  CAS  Google Scholar 

  • Pinheiro AC et al (2013) Transport mechanism of macromolecules on hydrophilic bio-polymeric matrices—diffusion of protein-based compounds from chitosan films. J Food Eng 116:633–638

    Article  CAS  Google Scholar 

  • Pinthus EJ et al (1993) Criterion for oil uptake during deep fat frying. J Food Sci 58(1):204–205

    Article  CAS  Google Scholar 

  • Polakovic M et al (1999) Lidocaine loaded biodegradable nanospheres: II. Modelling of drug release. J Control Release 60(2–3):169–177

    Article  PubMed  CAS  Google Scholar 

  • Prill MAS et al (2012) Atmosfera modificada e controle de etileno para bananas 'Prata-Anã' cultivadas na Amazônia Setentrional Brasileira. Rev Bras Frutic 34(4):990–1003

    Article  Google Scholar 

  • Quintavalla S, Vicini L (2002) Antimicrobial food packaging in meat industry. Meat Sci 62(3):373–380

    Article  PubMed  CAS  Google Scholar 

  • Reynier A et al (2002) Migration of additives from polymers into food simulants: numerical solution of a mathematical model taking into account food and polymer interactions. Food Addit Contam 1(1):89–102

    Article  CAS  Google Scholar 

  • Rivero S et al (2013) Controlled delivery of propionic acid from chitosan films for pastry dough conservation. J Food Eng 116(2):524–531

    Article  CAS  Google Scholar 

  • Roca E et al (2008) Effective moisture diffusivity modelling versus food structure and hygroscopicity. Food Chem 106:1428–1437

    Article  CAS  Google Scholar 

  • Rogers CE (1985) Permeation of gases and vapours in polymers. Chapter 2. In: Comyn J (ed) Polymer permeability. Elsevier Applied Science, London, pp 11–73

    Chapter  Google Scholar 

  • Rojas-Graü MA et al (2007) Alginate and gellan-based edible coatings as carriers of antibrowning agents applied on fresh-cut Fuji apples. Food Hydrocoll 21(1):118–127

    Article  CAS  Google Scholar 

  • Romanazzi G et al (2002) Effects of pre-and postharvest chitosan treatments to control storage grey mold of table grapes. J Food Sci 67(5):1862–1867

    Article  CAS  Google Scholar 

  • Romani VP et al (2017) Active and sustainable materials from rice starch, fish protein and oregano essential oil for food packaging. Ind Crops Prod 97:268–274

    Article  CAS  Google Scholar 

  • Ruiz-Navajas Y et al (2013) In vitro antibacterial and antioxidant properties of chitosan edible films incorporated with Thymus moroderi or Thymus piperella essential oils. Food Control 30(2):386–392

    Article  CAS  Google Scholar 

  • Saguy IS et al (1998) Oil uptake in deep fat frying: review. Ocl-Oleagineux corps Gras. Lipids 5(1):30–35

    Google Scholar 

  • Salgado PR et al (2015) Edible films and coatings containing bioactives. Curr Opin Food Sci 5:86–92

    Article  Google Scholar 

  • Salleh E et al (2007) Preparation, characterization and antimicrobial analysis of antimicrobial starch-based film incorporated with chitosan and lauric acid. Asian Chitin J 3:55–68

    Google Scholar 

  • Sayanjali S et al (2011) Evaluation of antimicrobial and physical properties of edible film based on carboxymethyl cellulose containing potassium sorbate on some mycotoxigenic aspergillus species in fresh pistachios. LWT Food Sci Technol 44(4):1133–1138

    Article  CAS  Google Scholar 

  • Sharma L, Singh C (2016) Sesame protein based edible films: development and characterization. Food Hydrocoll 61:139–147

    Article  CAS  Google Scholar 

  • Shellhammer TH, Krochta JM (1997) Water vapor barrier and rheological properties of simulated and industrial milk fat fractions. Trans ASAE 40:1119–1127

    Article  CAS  Google Scholar 

  • Shen XL et al (2010) Antimicrobial and physical properties of sweet potato starch films incorporated with potassium sorbate or chitosan. Food Hydrocoll 24:285–290

    Article  CAS  Google Scholar 

  • Shojaee-Aliabadi S et al (2013) Characterization of antioxidant-antimicrobial κ-carrageenan films containing Satureja hortensis essential oil. Int J Biol Macromol 52:116–124

    Article  PubMed  CAS  Google Scholar 

  • Silva-Weiss A et al (2013) Natural additives in bioactive edible films and coatings: functionality and applications in foods. Food Eng Rev 5(4):200–216

    Article  CAS  Google Scholar 

  • Siriphanich J (2006) Physiology and postharvest Technology in vegetable and fruit. Office of Extension and Training Kamphaeng Saen, Nakhon Pathom, Thailand

    Google Scholar 

  • Skurtys O et al. (2011) Food hydrocolloid edible films and coatings, Series: food science and technology

    Google Scholar 

  • Song X et al (2018) Effect of essential oil and surfactant on the physical and antimicrobial properties of corn and wheat starch films. Int J Biol Macromol 107:1302–1309

    Article  PubMed  CAS  Google Scholar 

  • Sothornvit R, Krochta JM (2000) Oxygen permeability and mechanical properties of films from hydrolyzed whey protein. J Agric Food Chem 48(9):3913–3916

    Article  PubMed  CAS  Google Scholar 

  • Sothornvit R, Pitak N (2007) Oxygen permeability and mechanical properties of banana films. Food Res Int 40(3):365–370

    Article  CAS  Google Scholar 

  • Souza AC et al (2013) Cassava starch composite films incorporated with cinnamon essential oil: antimicrobial activity, microstructure, mechanical and barrier properties. LWT Food Sci Technol 54(2):346–352

    Article  CAS  Google Scholar 

  • Suárez G, Gutiérrez TJ (2017) Recent advances in the development of biodegadable films and foams from cassava starch. In: Klein C (ed) Handbook on Cassava: production, potential uses and recent advances. Nova Science, New York, pp 297–312 EE.UU. ISBN: 978-1-53610-307-6

    Google Scholar 

  • Suppakul P et al (2003) Active packaging technologies with an emphasis on antimicrobial packaging and its applications. J Food Sci 68(2):408–420

    Article  CAS  Google Scholar 

  • Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16(1):75–85

    Article  CAS  Google Scholar 

  • Tapia-Blácido DR (2006) Films based on derivates of amaranth for use in foods PhD thesis, Unicamp, Brazil

    Google Scholar 

  • Tapia-Blácido DR et al (2007) Contribution of the starch, protein, and lipid fractions to the physical, thermal, and structural properties of amaranth (Amaranthus caudatus) flour films. J Food Sci 72(5):E293–E300

    Article  PubMed  CAS  Google Scholar 

  • Tuil R et al (2000) Converting biobased polymers into food packagings. Proceedings of the Food Biopack Conference, Copenhagen 27–29 August 2000, Copenhagen, Denmark, pp 28–30

    Google Scholar 

  • Ustunol Z (2009) Edible films and coatings for meat and poultry. In: Edible films and coatings for food applications. Springer, New York, NY, pp 245–268

    Chapter  Google Scholar 

  • Valero M, Ginger MJ (2006) Effects of antimicrobial components of essential oils on growth of Bacillus cereus INRA L2104 in and the sensory qualities of carrot broth. Int J Food Microbiol 106(1):90–94

    Article  PubMed  CAS  Google Scholar 

  • Valero M, Salmeron MC (2003) Antibacterial activity of 11 essential oils against Bacillus cereus in tyndallized carrot broth. Int J Food Microbiol 85(1–2):73–81

    Article  PubMed  CAS  Google Scholar 

  • Van Long NN et al (2016) Active packaging with antifungal activities. Int J Food Microbiol 220:73–90

    Article  CAS  Google Scholar 

  • Vargas M et al (2008) Recent advances in edible coatings for fresh and minimally processed fruits. Crit Rev Food Sci Nutr 48(6):496–511

    Article  PubMed  CAS  Google Scholar 

  • Vargas CG et al (2017) Comparative study on the properties of films based on red rice (Oryza glaberrima) flour and starch. Food Hydrocoll 65:96–106

    Article  CAS  Google Scholar 

  • Vermeiren L et al (2002) Effectiveness of some recent antimicrobial packaging concepts. Food Addit Contam 19(S1):163–171

    Article  PubMed  CAS  Google Scholar 

  • Voilley A et al (2011) Transfer of water and active molecules at the interfaces in complex food systems: theoretical and practical aspects. Proc Food Sci 1:879–885

    Article  CAS  Google Scholar 

  • Wambura P et al (2011) Effects of sonication and edible coating containing rosemary and tea extracts on reduction of peanut lipid oxidative rancidity. Food Bioprocess Technol 4(1):107–115

    Article  CAS  Google Scholar 

  • Xiong L (1997) Structure-functionality relationships of muscle proteins. In: Damodaran S, Paraf A (eds) Food proteins and their applications. Marcel Dekker, New York, pp 341–392

    Google Scholar 

  • Yang L, Paulson A (2000) Mechanical and water vapor barrier properties of edible gellan films. Food Res Int 33(7):563–570

    Article  CAS  Google Scholar 

  • Yap M et al (2017) The effects of banana ripeness on quality indices for puree production. LWT Food Sci Technol 80:10–18

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delia Rita Tapia-Blácido .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tapia-Blácido, D.R., Maniglia, B.C., Tosi, M.M. (2018). Transport Phenomena in Edible Films. In: Gutiérrez, T. (eds) Polymers for Food Applications . Springer, Cham. https://doi.org/10.1007/978-3-319-94625-2_7

Download citation

Publish with us

Policies and ethics