Skip to main content

Functional Carbohydrate Polymers: Prebiotics

  • Chapter
  • First Online:

Abstract

Increasing scientific evidence has identified the correlation among dietary intake, the gut microbiome, and human health. Controlling the microbiome within the human gut through dietary modifications sheds light on novel nutritional strategies and clinical practices in reducing some chronic diseases. The emerging field of prebiotics, probiotics, and synbiotics is associated with the development of nutritional interventions, gut microbiome with positively impact health outcomes. Although there is strong evidence to demonstrate the complex link between gut microbiota and human health, substantial challenges still remain in delivering effective, stable and cost efficient foods with positive health outcomes, building personalized diets based on the gut microbiome profile, and standardizing clinical practices and establishing regulation. Dietary intervention, as a strong applicator, on microbiota and consequently on physiology and immune system, could play significant role in reducing the risk and progression of some chronic diseases including cancer and obesity. In this chapter, the authors focus on prebiotics as functional carbohydrate polymers, including traditional ones of human milk oligosaccharides (HMOS), fructooligosaccharides (FOS), and galactooligosaccharides (GOS), as well as potential ones of pectin oligosaccharides (POS), xylooligosaccharides (XOS), arabinoxylan oligosaccharides (AXOS), and glucomannan oligosaccharides (GMOS). To better understand the complex interplay of diet, nutrition and the microbiome in food development, as well as the effects of diet on the diversity of human microbiome, the contents of source, chemical structure, processing, physiological functionalities for each prebiotic will be covered.

Jun Yang is employee of PepsiCo Inc. The views expressed in this manuscript are those of the authors and do not necessarily reflect the position or policy of PepsiCo Inc.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AX:

Arabinoxylan

AXOS:

Arabinoxylan oligosaccharides

DF:

Dietary fiber

DP:

Degree of polymerization

FOS:

Fructooligosaccharides

GI tract:

Gastrointestinal tract

GMOS:

Glucomannan oligosaccharides

GOS:

Galactooligosaccharides

HMOS:

Human milk oligosaccharides

MW:

Molecular weight

OS:

Oligosaccharides

PI:

Prebiotic index

POS:

Pectin oligosaccharides

PS:

Polysaccharides

SCFAs:

Short-chain fatty acids

XOS:

Xylooligosaccharides

References

  • Aachary AA, Prapulla SG (2011) Xylooligosaccharides (XOS) as an emerging prebiotic: microbial synthesis, utilization, structural characterization, bioactive properties, and applications. Compr Rev Food Sci Food Saf 10:2–16

    Article  CAS  Google Scholar 

  • Akter MN, Sutriana A, Talpur AD, Hashim R (2016) Dietary supplementation with mannan oligosaccharide influences growth, digestive enzymes, gut morphology, and microbiota in juvenile striped catfish, Pangasianodon hypophthalmus. Aquac Int 24:127–144

    Article  CAS  Google Scholar 

  • Albrecht S, van Muiswinkel GC, Xu J, Schols HA, Voragen AG, Gruppen H (2011) Enzymatic production and characterization of konjac glu-comannan oligosaccharides. J Agric Food Chem 59:12658–12666

    Article  PubMed  CAS  Google Scholar 

  • Al-Ghazzewi FH, Khanna S, Tester RF, Piggott J (2007) The potential use of hydrolysed konjac glucomannan as a prebiotic. J Sci Food Agric 87:1758–1766

    Article  CAS  Google Scholar 

  • Alonso-Sande M, Teijeiro-Osorio D, Remuñán-López C, Alonso MJ (2009) Glucomannan, a promising polysaccharide for biopharmaceutical purposes. Eur J Pharm Biopharm 72:453–462

    Article  PubMed  CAS  Google Scholar 

  • Al-Sheraji SH, Ismail A, Manap MY, Mustafa S, Yusof RM, Hassan FA (2013) Prebiotics as functional foods: a review. J Funct Foods 5:1542–1553

    Article  CAS  Google Scholar 

  • Anderson JW, Baird P, Davis RH, Ferreri S, Knudtson M, Koraym A et al (2009) Health benefits of dietary fiber. Nutr Rev 67:188–205

    Article  PubMed  Google Scholar 

  • Andersson R, Åman P (2008) Cereal arabinoxylan: Occurence, structure and properties. In: McCleary BV, Prosky L (eds) Advanced dietary fiber technology. Blackwell Science, pp 301–314

    Google Scholar 

  • Andrewartha K, Phillips DR, Stone BA (1979) Solution properties of wheat-flour arabinoxylans and enzymically modified arabinoxylans. Carbohydr Res 77:191–204

    Article  CAS  Google Scholar 

  • Angus F, Smart S, Shortt C (2005) Prebiotic ingredients with emphasis on galacto-oligosaccharides and fructooligosaccharides. In: Tamine A (ed) Probiotic dairy products. Blackwell Publishing, Oxford, pp 120–137

    Google Scholar 

  • Arthee R, Vijila K (2014) Study on fructosyltransferase enzyme from Aspergillus sp. in fructooligosaccharides production. Res J Recent Sci 3:147–153

    CAS  Google Scholar 

  • Asakuma S, Hatakeyama E, Urashima T, Yoshida E, Katayama T, Yamamoto K, Kumagai H et al (2011) Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria. J Biol Chem 286:34583–34592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Association of Official Analytical Chemists (AOAC) (2005) Determination of trans-galactooligosaccharides (TGOS) in selected food products. Method 2001.02. In: Latimer GW, Horwitz W (eds) Official methods of analysis of AOAC International, 18th edn. AOAC International, Gaithersburg, MD

    Google Scholar 

  • Austin S, Bénet T, Michaud J, Cuany D, Rohfritsch P (2014) Determination of β-galactooligosaccharides by liquid chromatography. Int J Anal Chem 2014:768406. https://doi.org/10.1155/2014/768406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bagherian H, Ashtiani FZ, Fouladitajar A, Mohtashamy M (2011) Comparisons between conventional, microwave- and ultrasound-assistedmethods for extraction of pectin from grapefruit. Chem Eng Process Process Intensif 50:1237–1243

    Article  CAS  Google Scholar 

  • Barile D, Tao N, Lebrilla CN, Coisson JD, Arlorio M, Germana JB (2009) Permeate from cheese whey ultrafiltration is a source of milk oligosaccharides. Int Dairy J 19:524–530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bataillon M, Mathaly P, Nunes Cardinali AP, Duchiron F (1998) Extraction and Purification of arabinoxylans from destarched wheat bran in a pilot scale. Ind Crop Prod 8:37–43

    Article  CAS  Google Scholar 

  • Belorkar SA, Gupta AK (2016) Oligosaccharides: a boon from nature’s desk. AMB Express 6:82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benamrouche S, Cronier D, Debeire P, Chabbert B (2002) A chemical and histological study on the effect of (1,4)-beta-endo-xylanase treatment on wheat bran. J Cereal Sci 36:253–260

    Article  CAS  Google Scholar 

  • Bergmans MEF, Beldman G, Gruppen H, Voragen AGJ (1996) Optimisation of the selective extraction of (glucurono) arabinoxylans from wheat bran: use of barium and calcium hydroxide solution at elevated temperatures. J Cereal Sci 23:235–245

    Article  CAS  Google Scholar 

  • Bode L (2009) Human milk oligosaccharides: prebiotics and beyond. Nutr Rev 67:S183–S191

    Article  PubMed  Google Scholar 

  • Bode L (2012) Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology 22:1147–1162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bode L (2015) The functional biology of human milk oligosaccharides. Early Hum Dev 91:619–622

    Article  PubMed  CAS  Google Scholar 

  • Bornet F (2001) Fructo-oligosaccharides and other fructans: chemistry, structure and nutritional effects. In: McCleary BV, Prosky L (eds) Advanced dietary fiber technology. Blackwell Science, pp 480–493

    Google Scholar 

  • Borromei C, Careri M, Cavazza A, Corradini C, Elviri L, Mangia A, Merusi C (2009) Evaluation of fructooligosaccharides and inulins as potentially health benefiting food ingredients by HPAEC-PED and MALDI-TOF MS. Int J Anal Chem 2009:530639. https://doi.org/10.1155/2009/530639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Broekaert WF, Courtin CM, Verbeke K, Van de Wiele T, Verstraete W, Delcour JA (2011) Prebiotic and other health-related effects of cereal-derived arabinoxylans, arabinoxylan-oligosaccharides, and xylooligosaccharides. Crit Rev Food Sci Nutr 51:178–194

    Article  PubMed  CAS  Google Scholar 

  • Caffall KH, Mohnen D (2009) The structure, function, and biosynthesis ofplant cell wall pectic polysaccharides. Carbohydr Res 344:1879–1900

    Article  PubMed  CAS  Google Scholar 

  • Charbonneau MR, O’Donnell D, Blanton LV, Totten SM, Davis JC, Barratt MJ et al (2016) Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. Cell 164:859–871

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen J, Liang RH, Liu W, Li T, Liu CM, Wu SS et al (2013) Pectic-oligosaccharides prepared by dynamic high-pressure microfluidization and their in vitro fermentation properties. Carbohydr Polym 91:175–182

    Article  PubMed  CAS  Google Scholar 

  • Chonan O, Matsumoto K, Watanuki M (1995) Effect of galactooligosaccharides on calcium absorption and preventing bone loss in ovariectomized rats. Biosci Biotech Biochem 59:236–239

    Article  CAS  Google Scholar 

  • Christiaens S, Uwibambe D, Uyttebroek M, Droogenbroeck BV, Loey AMV, Hendrickx ME (2015) Pectin characterisation in vegetable waste streams: a starting point for waste valorisation in the food industry. LWT Food Scie Technol 61:275–282

    Article  CAS  Google Scholar 

  • Chuankhayan P, Hsleh CY, Huang YC, Hsleh YY, Guan HH, Hsleh YC, Tlen YC et al (2010) Crystal structures of Aspergillus japonicus fructosyltransferase complex with donor/acceptor substrates reveal complete subsites in the active site for catalysis. J Biol Chem 285:23251–23264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cinquin C, Le Blay G, Fliss I, Lacroix C (2004) Immobilization of infant fecal microbiota and utilization in an in vitro colonic fermentation model. Microb Ecol 48:128–138

    Article  PubMed  CAS  Google Scholar 

  • Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S et al (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488:178–184

    Article  PubMed  CAS  Google Scholar 

  • Cloetens L, De Preter V, Swennen K, Brockaert WF, Courtin CM, Delcour JA et al (2008) Dose-response effect of arabinoxylooligosaccharides on gastrointestinal motility and on colonic bacterial metabolism in healthy volunteers. J Am Coll Nutr 27:512–518

    Article  PubMed  CAS  Google Scholar 

  • Coda R, Kärki I, Nordlund E, Heiniö R-L, Poutanen K, Katina K (2014) Influence of particle size on bioprocess induced changes on technological functionality of wheat bran. Food Microbiol 37:69–77

    Article  PubMed  CAS  Google Scholar 

  • Concha J, Zúñiga ME (2012) Enzymatic depolymerization of sugar beet pulp: production and characterization of pectin and pectic-oligosaccharides as apotential source for functional carbohydrates. Chem Eng J 192:29–36

    Article  CAS  Google Scholar 

  • Concha J, Weinstein C, Zúñiga ME (2013) Production of pectic extracts from sugar beet pulp with antiproliferative activity on a breast cancer cell line. Front Chem Sci Eng 7:482–489

    Article  CAS  Google Scholar 

  • Connolly ML, Lovegrove JA, Tuohy KM (2010) Konjac glucomannan hydrolysate beneficially modulates bacterial composition and activity within the faecal microbiota. J Funct Foods 2:219–224

    Article  CAS  Google Scholar 

  • Coppa GV, Zampini L, Galeazzi T, Facinelli B, Ferrante L, Capretti R, Orazio G (2006) Human milk oligosaccharides inhibit the adhesion to Caco-2 cells of diarrheal pathogens: Escherichia coli, Vibrio cholerae, and Salmonella fyris. Pediatr Res 59:377–382

    Article  PubMed  CAS  Google Scholar 

  • Correia MAS, Mazumder K, Bras JLA, Firbank SJ, Zhu YP, Lewis RJ et al (2011) Structure and function of an arabinoxylan-specific xylanase. J Biol Chem 286:22510–22520

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Corzo N, Alonso JL, Azpiroz F, Calvo MA, Cirici M, Leis R et al (2015) Prebióticos: concepto, propiedades y efectos beneficiosos. Nutr Hosp 31:99–118

    PubMed  Google Scholar 

  • Corzo-Martínez M, Luscher A, de las Rivas B, Muñoz R, Moreno FJ (2015) Valorization of cheese and tofu whey through enzymatic synthesis of lactosucrose. PLoS One 10:e0139035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Corzo-Martínez M, García-Campos G, Montilla A, Moreno FJ (2016) Tofu whey permeate is an efficient source to enzymatically produce prebiotic fructooligosaccharides and novel fructosylated a-galactosides. J Agric Food Chem 64:4346–4352

    Article  PubMed  CAS  Google Scholar 

  • Costa GT, Guimaraes SB, de Carvalho Sampaio HA (2012) Fructo-oligosaccharide effects on blood glucose. An overview. Acta Cir Bras 27:279–282

    Article  PubMed  Google Scholar 

  • Costa GT, Abreu GC, Guimarães AB, Vasconcelos PR, Guimarães SB (2015) Fructo-oligosaccharide effects on serum cholesterol levels. An overview. Acta Cir Bras 30:366–370

    Article  PubMed  Google Scholar 

  • Courtin CM, Delcour JA (2002) Arabinoxylans and endoxylanases in wheat flour bread-making. J Cereal Sci 35:225–243

    Article  CAS  Google Scholar 

  • Courtin CM, Broekaert WF, Swennen K, Lescroart O, Onagbesan O, Buyse J et al (2008) Dietary inclusion of wheat bran arabinoxylooligosaccharides induces beneficial nutritional effects in chickens. Cereal Chem 85:607–613

    Article  CAS  Google Scholar 

  • Courtin CM, Swennen K, Verjans P, Delcour JA (2009) Heat and pH stability of prebiotic arabinoxylooligosaccharides, xylooligosaccharides and fructooligosaccharides. Food Chem 112:831–837

    Article  CAS  Google Scholar 

  • Cronin BE, Allsopp PJ, Slevin MM, Magee PJ, Livingstone MB, Strain JJ et al (2016) Effects of supplementation with a calcium-rich marine-derived multi-mineral supplement and short-chain fructo-oligosaccharides on serum lipids in postmenopausal women. Br J Nutr 115:658–665

    Article  PubMed  CAS  Google Scholar 

  • Damen B, Verspreet J, Pollet A, Broekaert WF, Delcour JA, Courtin CM (2011) Prebiotic effects and intestinal fermentation of cereal arabinoxylans and arabinoxylan oligosaccharides in rats depend strongly on their structural properties and joint presence. Mol Nutr Food Res 55:1862–1874

    Article  PubMed  CAS  Google Scholar 

  • Damen B, Pollet A, Dornez E, Broekaert AF, Van Haesendonck I et al (2012) Xylanase-mediated in situ production of arabinoxylan oligosaccharides with prebiotic potential in whole meal breads and breads enriched with arabinoxylan rich materials. Food Chem 131:111–118

    Article  CAS  Google Scholar 

  • David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563

    Article  PubMed  CAS  Google Scholar 

  • Davis LM, Martinez I, Walter J, Hutkins R (2010) A dose dependent impact of prebiotic galactooligosaccharides on the intestinal microbiota of healthy adults. Int J Food Microbiol 144:285–292

    Article  PubMed  CAS  Google Scholar 

  • de Vries JA, Voragen AGJ, Rombouts FM, Pilnik W (1983) Distribution of methoxyl groups in apple pectic substances. Carbohydr Polym 3:245–258

    Article  Google Scholar 

  • Dehghan P, Gargari BP, Asgharijafarabadi M (2013) Effects of high performance inulin supplementation on glycemic status and lipid profile in women with type 2 diabetes: a randomized, placebo-controlled clinical trial. Health Promot Perspect 3:55–63

    PubMed  PubMed Central  Google Scholar 

  • Dervilly-Pinel G, Rimsten L, Saulnier L, Andersson R, Aman P (2001) Water extractable arabinoxylan from pearled flours of wheat, barley, rye and triticale. Evidence for the presence of ferulic acid dimers and their involvement in gel formation. J Cereal Sci 34:207–214

    Article  CAS  Google Scholar 

  • Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M et al (2016) A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167:1339–1353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Díez-Municio M, DeLasRivas B, Jimeno ML, Munoz R, Moreno F, Herrero M (2013) Enzymatic synthesis and characterization of fructooligosaccharides and novel maltosylfructosides by inulosucrase from Lactobacillus gasseri DSM20604. Appl Environ Microbiol 79:4129–4140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dominguez AL, Rodrigues LR, Lima NM, Teixeira JA (2014) An overview of the recent developments on fructooligosaccharide production and application. Food Bioprocess Technol 7:324–337

    Article  CAS  Google Scholar 

  • Doner, L. W., Sweeney, G. A., & Hicks, K. B. (2000). Isolation of hemicellulose from corn fiber, U.S. patent 6,147,206

    Google Scholar 

  • Doner LW, Johnston DB, Singh V (2001) Analysis and properties of arabinoxylans from discrete corn wet-milling fiber fractions. J Agric Food Chem 49:1266–1269

    Article  PubMed  CAS  Google Scholar 

  • Dongowski G, Lorenz A, Anger H (2000) Degradation of pectins with different degrees of esterification by Bacteroides thetaiotaomicron isolated from human gut flora. Appl Environ Microbiol 66:1321–1327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ducatelle R, Eeckhaut V, Haesebrouck F, Van Immerseel F (2015) A review on prebiotics and probiotics for the control of dysbiosis: present status and future perspectives. Animal 9:43–48

    Article  PubMed  CAS  Google Scholar 

  • Elamir AA, Tester RF, Al-Ghazzewi FH, Kaal HY, Ghalbon AA, Elmegrahai NA (2008) Effects of konjac glucomannan hydrolysates on the gut microflora of mice. Nutr Food Sci 38:422–429

    Article  Google Scholar 

  • Espinosa RM, Tamez M, Prieto P (2007) Efforts to emulate human milk oligosaccharides. Br J Nutr 98:S74–S79

    PubMed  CAS  Google Scholar 

  • Falck P, Linares-Pastén JA, Karlsson EN, Adlercreutz P (2018) Arabinoxylanase from glycoside hydrolase family 5 is a selective enzyme for production of specific arabinoxylooligosaccharides. Food Chem 242:579–584

    Article  PubMed  CAS  Google Scholar 

  • Fissore EN, Rojas AM, Gerschenson LN (2012) Rheological performance ofpectin-enriched products isolated from red beet (Beta vulgaris L: var. conditiva) through alkaline and enzymatic treatments. Food Hydrocoll 26:249–260

    Article  CAS  Google Scholar 

  • Flores-Maltos DA, Mussatto SI, Contreras-Esquivel JC, Rodríguez-Herrera R, Teixeira JA, Aguilar CN (2016) Biotechnological production and application of fructooligosaccharides. Crit Rev Biotechnol 36:259–267

    Article  PubMed  CAS  Google Scholar 

  • Fontana JD, Grzybowski A, Tiboni M, Passos M (2011) Fructo-oligosaccharide production from inulin through partial citric or phosphoric acid hydrolyses. J Med Food 14:1425–1430

    Article  PubMed  CAS  Google Scholar 

  • Galeotti F, Coppa GV, Zampini L, Maccari F, Galeazzi T, Padella L et al (2014) Capillary electrophoresis separation of human milk neutral and acidic oligosaccharides derivatized with 2-aminoacridone. Electrophoresis 35:811–818

    Article  PubMed  CAS  Google Scholar 

  • Ganan M, Collins M, Rastall R, Hotchkiss AT, Chau HK, Carrascosa AV et al (2010) Inhibition by pectic oligosaccharides of the invasion of undifferentiated and differentiated CaCo-2 cells by Campylobacter jejuni. Int J Food Microbiol 137:181–185

    Article  PubMed  CAS  Google Scholar 

  • Garcia AL, Otto B, Reich S-C, Weickert MO, Steiniger J, Machowetz A et al (2007) Arabinoxylan consumption decreases postprandial serum glucose, serum insulin and plasma total ghrelin response in subjects with impaired glucose tolerance. Eur J Clin Nutr 61:334–341

    Article  PubMed  CAS  Google Scholar 

  • García-Cayuela T, Díez-Municio M, Herrero M, Martínez-Cuesta MC, Peláez C, Requena T, Moreno FJ (2014) Selective fermentation of potential prebiotic lactose-derived oligosaccharides by probiotic bacteria. Int Dairy J 38:11–15

    Article  CAS  Google Scholar 

  • Garrido D, Ruiz-Moyano S, Lemay DG, Sela DA, German JB, Mills DA (2015) Comparative transcriptomics reveals key differences in the response to milk oligosaccharides of infant gut-associated bifidobacteria. Sci Rep 5:13517. https://doi.org/10.1038/srep13517

    Article  PubMed  PubMed Central  Google Scholar 

  • Gelroth J, Ranhotra GS (2001) Food uses of fiber. In: Cho SS, Dreher ML (eds) Handbook of dietary fiber. Marcel Dekker, New York, pp 435–451

    Google Scholar 

  • Geraylou Z, Souffreau C, Rurangwa E, Maes GE, Spanier KI et al (2013) Prebiotic effects of arabinoxylan oligosaccharides on juvenile Siberian sturgeon (Acipenser baerii) with emphasis on the modulation of the gut microbiota using 454 pyrosequencing. FEMS Microbiol Ecol 86:357–371

    Article  PubMed  CAS  Google Scholar 

  • Gibson R, Roberfroid MR (1995) Dietary modulation of the human colonic microbiota introducing the concept of prebiotics. J Nutr 125:1401–1412

    PubMed  CAS  Google Scholar 

  • Gill RK, Dudeja PK (2011) A novel facet to consider for the effects of butyrate on its target cells. Focus on “The short-chain fatty acid butyrate is a substrate of breast cancer resistance protein”. Am J Physiol Cell Physiol 301(5):C977–C979

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goehring KC, Kennedy AD, Prieto PA, Buck RH (2014) Direct evidence for the presence of human milk oligosaccharides in the circulation of breastfed infants. PLoS One 9:e101692. https://doi.org/10.1371/journal.pone.0101692

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gomez GD, Balcazar JL (2008) A review on the interactions between gut microbiota and innate immunity of fish. FEMS Immunol Med Microbiol 52:145–154

    Article  PubMed  CAS  Google Scholar 

  • Gómez B, Gullon B, Yáñez R, Parajo JC, Alonso JL (2013) Pectic oligosaccharides from lemon peel wastes: production, purification, and chemical characterization. J Agric Food Chem 61:10043–10053

    Article  PubMed  CAS  Google Scholar 

  • Gómez B, Gullon B, Yanez R, Schols H, Alonso JL (2016) Prebiotic potential of pectins and pectic oligosaccharides derived from lemon peel wastes and sugar beet pulp: a comparative evaluation. J Funct Foods 20:108–121

    Article  CAS  Google Scholar 

  • González-Centeno MR, Knoerzer K, Sabarez H, Simal S, Rosselló C, Femenia A (2014) Effect of acoustic frequency and power density on the aqueous ultrasonic-assisted extraction of grape pomace (Vitis vinifera L.)—a response surface approach. Ultrason Sonochem 21:2176–2184

    Article  PubMed  CAS  Google Scholar 

  • Gosling A, Stevens GW, Barber AR, Kentish SE, Gras SL (2010) Recent advances refining galactooligosaccharide production from lactose. Food Chem 121:307–318

    Article  CAS  Google Scholar 

  • Grand View Research (GVR) (2016a) Fructooligosaccharides (FOS) market analysis by source (inulin, sucrose) by application (food & beverages, infant formula, dietary supplements, animal Feed, pharmaceuticals) and segment forecasts to 2024. https://www.grandviewresearch.com/industry-analysis/fructooligosaccharides-market/toc. Accessed 1 Dec 2017

  • Grand View Research (GVR) (2016b) Galacto-oligosaccharide (GOS) market trend analysis by application (food & beverage, dietary supplements), by region (North America, Europe, Asia Pacific, Latin America, Middle East & Africa), by country, and segment forecasts, 2014–2025. https://www.grandviewresearch.com/industry-analysis/galacto-oligosaccharides-gos-market. Accessed 1 Dec 2017

  • Grootaert C, Delcour JA, Courtin CM, Broekaert WF, Verstraete W, Van de Wiele T (2007) Microbial metabolism and prebiotic potency of arabinoxylan oligosaccharides in the human intestine. Trends Food Sci Technol 18:64–71

    Article  CAS  Google Scholar 

  • Grootaert C, Van den Abbeele P, Marzorati M, Broekaert WF, Courtin CM, Delcour JA et al (2009) Comparison of prebiotic effects of arabinoxylan oligosaccharides and inulin in a simulator of the human intestinal microbial ecosystem. FEMS Microbiol Ecol 69:231–242

    Article  PubMed  CAS  Google Scholar 

  • Guerreiro I, Oliva-Teles A, Enes P (2015) Improved glucose and lipid metabolism in European sea bass (Dicentrarchus labrax) fed short-chain fructooligosaccharides and xylooligosaccharides. Aquaculture 441:57–63

    Article  CAS  Google Scholar 

  • Guevara-Arauza JC, de Jesús Ornelas Paz J, Pimentel-González DJ, Rosales Mendoza S, Soria Guerra RE, Paz Maldonado LMT (2012) Prebiotic effect of mucilage and pectic derived oligosaccharides from nopal (Opuntia ficus-indica). Food Sci Biotechnol 21:997–1003

    Article  CAS  Google Scholar 

  • Gullón B, Gullón P, Sanz Y, Alonso JL, Parajó J (2011) Prebiotic potential of a refined product containing pectic oligosaccharides. LWT Food Sci Technol 44:1687–1696

    Article  CAS  Google Scholar 

  • Gullón B, Gómez B, Martínez-Sabajanes M, Yáñez R, Parajó J, Alonso J (2013) Pectic oligosaccharides: manufacture and functional properties. Trends Food Sci Technol 30:153–161

    Article  CAS  Google Scholar 

  • Guo Q, Goff HD, Cui SW (2017) Structural characterization of galacto-oligosaccharides (VITAGOS™) synthesized by transgalactosylation of lactose. Bioactive Carbohydrate. Dietary Fibre Available online July 21, 2017

    Google Scholar 

  • Hang H, Miao M, Li Y, Jiang B, Mu W, Zhang T (2013) Difructosan anhydrides III preparation from sucrose by coupled enzyme reaction. Carbohydr Polym 92:1608–1611

    Article  PubMed  CAS  Google Scholar 

  • Harmayani E, Aprilia V, Marsono Y (2014) Characterization of glucomannan from Amorphophallus oncophyllus and its prebiotic activity in vivo. Carbohydr Polym 112:475–479

    Article  PubMed  CAS  Google Scholar 

  • Havenaar R (2011) Intestinal health functions of colonic microbial metabolites: a review. Benefic Microbes 2:103–114

    Article  CAS  Google Scholar 

  • Ho Y-Y, Lin C-M, Wu M-C (2017) Evaluation of the prebiotic effects of citrus pectin Hydrolysate. J Food Drug Anal 25:550–558

    Article  PubMed  CAS  Google Scholar 

  • Hosseini SS, Khodaiyan F, Yarmand MS (2016) Optimization of microwave assisted extraction of pectin from sour orange peel and its physicochemical properties. Carbohydr Polym 140:59–65

    Article  PubMed  CAS  Google Scholar 

  • Hotchkiss AT, Olano-Martin E, William EG, Gibson GR, Rastall RA (2003) Pectic oligosaccharides as prebiotics. In: Eggleston G, Cote GL (eds) Oligosaccharides in food and agriculture, ACS symposium series, vol 849. American Chemical Society, Washington, pp 54–62

    Chapter  Google Scholar 

  • Houghteling PD, Walker WA (2015) Why is initial bacterial colonization of the intestine important to the infant’s and child’s health? J Pediatr Gastroenterol Nutr 60:294–307

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu K, Liu Q, Wang S, Ding K (2009) New oligosaccharides prepared by acidhydrolysis of the polysaccharides from Nerium indicum Mill and theirantiangiogenesis activities. Carbohydr Res 344:198–203

    Article  PubMed  CAS  Google Scholar 

  • Hughes SA, Shewry PR, Li L, Gibson GR, Sanz ML et al (2007) In vitro fermentation by human fecal microflora of wheat arabinoxylans. J Agric Food Chem 55:4589–4595

    Article  PubMed  CAS  Google Scholar 

  • Hutkins RW, Krumbeck JA, Bindels LB, Cani PD, Fahey G Jr, Goh YJ et al (2016) Prebiotics: why definitions matter. Curr Opin Biotechnol 37:1–7

    Article  PubMed  CAS  Google Scholar 

  • Immerzeel P, Falck P, Galbe M, Adlercreutz P, Karlsson EN, Stålbrand H (2014) Extraction of water-soluble xylan from wheat bran and utilization of enzymatically produced xylooligosaccharides by Lactobacillus, Bifidobacterium and Weissella spp. LWT Food Sci Technol 56:321–327

    Article  CAS  Google Scholar 

  • Intanon M, Arreola SL, Pham NH, Kneifel W, Haltrich D, Nguyen TH (2014) Nature and biosynthesis of galacto-oligosaccharides related to oligosaccharides in human breast milk. FEMS Microbiol Lett 353:89–97

    Article  PubMed  CAS  Google Scholar 

  • Ito T, Katayama T, Hattie M, Sakurama H, Wada J, Suzuki R, Ashisa H, Wakagi T, Yamamto K, Stubbs KA, Fushionobu S (2013) Crystal structures of a glycoside hydrolase family 20 lacto-n-biosidase from bifidobacterium bifidum. J Biol Chem 288:11795–11806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Izydorczyk MS, Biliaderis CG (2007) Arabinoxylans: technologically and nutritionally functional plant polysaccharides. In: Functional food carbohydrates. CRC Press Taylor & Francis Group, Boca Raton, FL, pp 249–290

    Google Scholar 

  • Izydorczyk MS, Dexter JE (2008) Barley b-glucans and arabinoxylans: molecular structure, physicochemical properties, and uses in food products—a review. Food Res Int 41:850–868

    Article  CAS  Google Scholar 

  • Jantscher-Krenn E, Bode L (2012) Human milk oligosaccharides and their potential benefits for the breast-fed neonate. Minerva Pediatr 64:83–99

    PubMed  CAS  Google Scholar 

  • Jantscher-Krenn E, Lauwae T, Bliss LA, Reed SL, Gillin FD, Bode L (2012) Human milk oligosaccharides reduce Entamoeba histolytica attachment and cytotoxicity in vitro. Br J Nutr 108:1839–1846

    Article  PubMed  CAS  Google Scholar 

  • Jensen NS, Canale-Parola E (1986) Bacteroides pectinophilus sp. nov. and Bacteroides galacturonicus sp. nov.: two pectinolytic bacteria from the human intestinal tract. Appl Environ Microbiol 52:880–887

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang H, Ling Z, Zhang Y, Mao H, Ma Z, Yin Y et al (2015) Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun 48:186–194

    Article  PubMed  Google Scholar 

  • Jongbin L, Jiyoung Y, Ko S, Lee S (2012) Extraction and characterization ofpectin from Yuza (Citrus junos) pomace: a comparison of conventional-chemical and combined physical-enzymatic extractions. Food Hydrocoll 29:160–165

    Article  CAS  Google Scholar 

  • Kabel MA, Kortenoeven L, Schols HA, Voragen AG (2002) In vitro fermentability of differently substituted xylo-oligosaccharides. J Agric Food Chem 50:6205–6210

    Article  PubMed  CAS  Google Scholar 

  • Khodaei N, Karboune S (2013) Extraction and structural characterisation of rhamnogalacturonan I-type pectic polysaccharides from potato cell wall. Food Chem 139:617–623

    Article  PubMed  CAS  Google Scholar 

  • Khodaei N, Fernandez B, Fliss I, Karboune S (2016) Digestibility and prebiotic properties of potato rhamnogalacturonan Ipolysaccharide and its galactose-rich oligosaccharides/oligomers. Carbohydr Polym 136:1074–1084

    Article  PubMed  CAS  Google Scholar 

  • Khuwijitjaru P, Watsanit K, Adachi S (2012) Carbohydrate content and composition of product from subcritical water treatment of coconut meal. J Ind Eng Chem 18:225–229

    Article  CAS  Google Scholar 

  • Koubala BB, Christiaens S, Kansci G, Loey AMV, Hendrickx ME (2014) Isolation and structural characterisation of papaya peel pectin. Food Res Int 55:215–221

    Article  CAS  Google Scholar 

  • Kukkonen K, Savilahti E, Haahtela T, Juntunen-Backman K, Korpela R, Poussa T, Tuure T, Kuitunen M (2007) Probiotics and prebiotic galactooligosaccharides in the prevention of allergic diseases: a randomized, double-blind, placebo-controlled trial. J Allergy Clin Immunol 119:192–198

    Article  PubMed  CAS  Google Scholar 

  • Kunz C (2012) Historical aspects of human milk oligosaccharides. Adv Nutr 3(Suppl):430S–439S

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kunz C, Rudloff S, Baier W, Klein N, Strobel S (2000) Oligosaccharides in human milk: structural, functional, and metabolic aspects. Annu Rev Nutr 20:699–722

    Article  PubMed  CAS  Google Scholar 

  • Kutty PK (2016) Breastfeeding and risk of parasitic infection—a review. Asian Pac J Trop Biomed 4:847–858

    Article  Google Scholar 

  • Labourel A, Crouch LI, Bras JLA, Jackson A, Rogowski A, Gray J et al (2016) The mechanism by which arabinoxylanases can recognize highly decorated xylans. J Biol Chem 291:22149–22159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lama-Muñoz A, Rodríguez-Gutiérrez G, Rubio-Senent F, Fernández-Bolaños J (2012) Production, characterization and isolation of neutral and pectic oligosaccharides with low molecular weights from olive by-products thermally treated. Food Hydrocoll 28:92–104

    Article  CAS  Google Scholar 

  • Lamsal B (2012) Production, health aspects and potential food uses of dairy prebiotic galactooligosaccharides. J Sci Food Agric 92:2020–2028

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, Synytsya A, Kim HB, Choi DJ, Lee S, Lee J et al (2013) Purification, characterization and immune-modulating activity of a pectic polysaccharide isolated from Korean mulberry fruit Oddi (Morus alba L.). Int Immunopharmacol 17:858–866

    Article  PubMed  CAS  Google Scholar 

  • Lee EH, Park H-R, Shin M-S, Cho SY, Choi H-J, Shin K-S (2014) Antitumor metastasis activity of pectic polysaccharide purified from the peels of Korean Citrus Hallabong. Carbohydr Polym 111:72–79

    Article  PubMed  CAS  Google Scholar 

  • Leijdekkers AGM, Aguirre M, Venema K, Bosch G, Gruppen H, Schols HA (2014) In vitro fermentability of sugar beet pulp derived oligosaccharides using human and pig fecal inocula. J Agric Food Chem 62:1079–1087

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Wang YJ, Wang L, Jiang KY (2008) Influence of several non-nutrient additives on nonspecific immunity and growth of juvenile turbot, Scophthalmus maximus L. Aquac Nutr 14:387–395

    Article  CAS  Google Scholar 

  • Li J, Liu X, Zhou B, Zhao J, Li S (2013) Determination of fructooligosaccharides in burdock using HPLC and microwave-assisted extraction. J Agric Food Chem 61:5888–5892

    Article  PubMed  CAS  Google Scholar 

  • Li J, Hu D, Zong W, Lv G, Li S (2014) Determination of inulin-type fructooligosaccharides in edible plants by high-performance liquid chromatography with charged aerosol detector. J Agric Food Chem 62:7707–7713

    Article  PubMed  CAS  Google Scholar 

  • Lis-Kuberka J, Berghausen-Mazurb M, Orczyk-Pawiłowicz M (2017) Alpha 2, 3- and alpha 2,6-sialylation of human skim milk glycoproteins during milk maturation. J Appl Biomed 15:196–203

    Article  Google Scholar 

  • Liu D, Zhang L, Xu Y, Zhang X (2013) The influence of ultrasound on the structure, rheological properties and degradation path of citrus pectin. Proc Meet Acoust 19:045092

    Article  Google Scholar 

  • Liu JH, Xu QH, Zhang JJ, Zhou XX et al (2015) Preparation, composition analysis and antioxidant activities of konjacoligo-glucomannan. Carbohydr Polym 130:398–404

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Cheng FF, Wang JM, Wan ZL, Sun YE, Yang XQ (2016) Preparation and characterization of surface-active pectin from soya hulls by phosphate-assisted subcritical water combined with ultrasonic treatment. Int J Food Sci Technol 51:61–68

    Article  CAS  Google Scholar 

  • Liu Z, Qiao L, Yang F, Gu H, Yang L (2017) Bronsted acidic ionic liquid based ultrasound-microwave synergistic extraction of pectin from pomelo peels. Int J Biol Macromol 94:309–318

    Article  PubMed  CAS  Google Scholar 

  • Lorenzoni ASG, Aydos LF, Klein MP, Rodrigues RC, Hertz PF (2014) Fructooligosaccharides synthesis by highly stable immobilized β-fructofuranosidase from Aspergillus aculeatus. Carbohydr Polym 103:193–197

    Article  PubMed  CAS  Google Scholar 

  • Macfarlane GT, Steed H, Macfarlane S (2008) Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J Appl Microbiol 104:305–344

    PubMed  CAS  Google Scholar 

  • Maes C, Delcour JA (2002) Structural characterisation of water-extractable and water-unextractable arabinoxylans in wheat bran. J Cereal Sci 35:315–326

    Article  CAS  Google Scholar 

  • Maliniak A, Widmalm G (2014) Structural analysis of carbohydrates by nuclear magnetic resonance spectroscopy and molecular simulations: application to human milk ligosaccharides. In: Moreno FJ, Sanz ML (eds) Food oligosaccharides: production, analysis and bioactivity. Wiley, Chichester, UK

    Google Scholar 

  • Mandalari G, Nueno Palop C, Tuohy K, Gibson GR, Bennett RN, Waldron KW (2007) In vitro evaluation of the prebiotic activity of a pectic oligosaccharide-rich extract enzymatically derived from bergamot peel. Appl Environ Microbiol 73:1173–1179

    CAS  Google Scholar 

  • Manderson K, Pinart M, Tuohy KM, Grace WE, Hotchkiss AT, Widmer W et al (2005) In vitro determination of prebiotic properties of oligosaccharides derived from an orange juice manufacturing by-product stream. Appl Environ Microbiol 71:8383–8389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mantovanl V, Galeotti F, Maccari F, Volpl N (2016) Recent advances on separation and characterization of human milk oligosaccharides. Electrophoresis 73:1514–1524

    Article  CAS  Google Scholar 

  • Maran JP, Priya B (2015) Ultrasound assisted extraction of pectin from sisal waste. Carbohydr Polym 115:732–738

    Article  PubMed  CAS  Google Scholar 

  • Marcobal A, Barboza M, Froehlich JW, Block DE, German JB, Lebrilla CB (2010) Consumption of human milk oligosaccharides by gut-related microbes. J Agric Food Chem 58:5334–5340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martin CR, Ling PR, Blackburn GL (2016) Review of infant feeding: key features of breast milk and infant formula. Nutrients 8:279. https://doi.org/10.3390/nu8050279

    Article  PubMed Central  CAS  Google Scholar 

  • Martínez M, Yáñez R, Alonsó JL, Parajó JC (2010) Chemical production of pectic oligosaccharides from orange peel wastes. Ind Eng Chem Res 49:8470–8476

    Article  CAS  Google Scholar 

  • Marx C, Bridge R, Wolf AK, Rich W, Kim JH, Bode L (2014) Human milk oligosaccharide composition differs between donor milk and mother’s own milk in the NICU. J Hum Lact 30:54–61

    Article  PubMed  Google Scholar 

  • Matsuura Y (1991) Pectic acid degrading enzymes from human feces. Agric Biol Chem 55:885–886

    CAS  Google Scholar 

  • McLaughlin HP, Motherway MO, Lakshminarayanan B, Stanton C, Ross RP et al (2015) Carbohydrate catabolic diversity of bifidobacteria and lactobacilli of human origin. Int J Food Microbiol 203:109–121

    Article  PubMed  CAS  Google Scholar 

  • Meyer TW, Hostetter TH (2012) Uremic solutes from colon microbes. Kidney Int 81:949–954

    Article  PubMed  CAS  Google Scholar 

  • Michalak M, Thomassen LV, Roytio H, Ouwehand AC, Meyer AS, Mikkelsen JD (2012) Expression and characterization of an endo-1,4-β-galactanase from Emericella nidulans and Pichia pastoris for enzymatic design of potentially prebiotic oligosaccharides from potato galactans. Enzym Microb Technol 50, 121–129

    Google Scholar 

  • Míguez B, Gómez B, Gullón P, Gullón B, Alonso JL (2016) Pectic oligosaccharides and other emerging prebiotics. In: Rao V, Rao LG (eds) Prebiotics and probiotics in human nutrition and health. InTech, Rijeka

    Google Scholar 

  • Miyauchi E, O’Callaghan J, Butto LF, Hurley G, Melgar S, Tanabe S et al (2012) Mechanism of protection of transepithelial barrier function by Lactobacillus salivarius: strain dependence and attenuation by bacteriocin production. Am J Physiol Gastrointest Liver Physiol 303:G1029–G1041

    Article  PubMed  CAS  Google Scholar 

  • Monobe M, Maeda-Yamamoto M, Matsuoka Y, Kaneko A, Hiramoto S (2008) Immunostimulating activity and molecular weight dependence of an arabinoxylan derived from wheat bran. J Jpn Soc Food Sci Technol/Nippon Shokuhin Kagaku Kogaku Kaishi 55:245–249

    Article  CAS  Google Scholar 

  • Moon JS, Li L, Bang J, Soo Han N (2016) Application of in vitro gut fermentation models to food components: a review. Food Sci Biotechnol 25:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno FJ, Corzo N, Montilla A, Villamiel M, Olano A (2017) Current state and latest advances in the concept, production and functionality of prebiotic oligosaccharides. Curr Opin Food Sci 13:50–55

    Article  Google Scholar 

  • Morgan NK, Wallace A, Bedford MR, Choct M (2017) Efficiency of xylanases from families 10 and 11 in production of xylo-oligosaccharides from wheat arabinoxylans. Carbohydr Polym 167:290–296

    Article  PubMed  CAS  Google Scholar 

  • Morrison DJ, Preston T (2016) Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7:189–200

    Article  PubMed  PubMed Central  Google Scholar 

  • Morrow AL, Ruiz-Palacios GM, Altaye M, Jiang X, Guerrero ML, Meinzen-Derr JK et al (2004) Human milk oligosaccharides are associated with protection against diarrhea in breast-fed infants. J Pediatr 145:297–303

    Article  PubMed  CAS  Google Scholar 

  • Musilova S, Rada V, Vlkova E, Bunesova V (2014) Beneficial effects of human milk oligosaccharides on gut microbiota. Benefic Microbes 5:273–283

    Article  CAS  Google Scholar 

  • Mussatto SI, Mancilha IM (2007) Nondigestible oligosaccharides: a review. Carbohydr Polym 68:587–597

    Article  CAS  Google Scholar 

  • Naqash F, Masoodi FA, Rather SA, Wani SM, Gani A (2017) Emerging concepts in the nutraceutical and functional properties of Pectin—a review. Carbohydr Polym 168:227–239

    Article  PubMed  CAS  Google Scholar 

  • Neyrinck AM, Delzenne NM (2010) Potential interest of gut microbial changes induced by non-digestible carbohydrates of wheat in the management of obesity and related disorders. Curr Opin Clin Nutr Metab Care 13:722–728

    Article  PubMed  CAS  Google Scholar 

  • Neyrinck AM, Possemiers S, Druart C, Van de Wiele T, De Backer F et al (2011) Prebiotic effects of wheat arabinoxylan related to the increase in bifidobacteria, roseburia and bacteroides/prevotella in diet-induced obese mice. PLoS One 6:e20944

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W et al (2012) Host-gut microbiota metabolic interactions. Science 336:1262–1267

    Article  PubMed  CAS  Google Scholar 

  • Niittynen L, Kajander K, Korpela R (2007) Galacto-oligosaccharides and bowel function. Scand J Food Nutr 51:62–66

    Article  PubMed Central  Google Scholar 

  • Nishinari K, Takemasa M, Zhang H, Takahashi R (2007) Storage plant polysaccharides: xyloglucans, galactomannans, glucomannans. In: Kamerling JP (ed) Comprehensive glycoscience. Elsevier, pp 613–623

    Google Scholar 

  • O’Callaghan A, van Sinderen D (2016) Bifidobacteria and their role as members of the human gut microbiota. Front Microbiol 7:925

    PubMed  PubMed Central  Google Scholar 

  • Oechslin R, Lutz M, Amado R (2003) Pectic substances isolated from apple cellulosic residue: Structural characterization of a new type of rhamnogalacturonan I. Carbohydr Polym 51:301–310

    Article  CAS  Google Scholar 

  • Olano-Martin E, Williams MR, Gibson GR, Rastall RA (2003) Pectins and pectic oligosaccharides inhibit Escherichia coli O157:H7 Shiga toxin as directed towards the human colonic cell line HT29. FEMS Microbiol Lett 218:101–105

    Article  PubMed  CAS  Google Scholar 

  • Oliveira D, Wilbey RA, Grandison AS, Roseiro LB (2015) Milk oligosaccharides: a review. Int J Dairy Technol 68:305–321

    Article  CAS  Google Scholar 

  • Olveira G, González-Molero I (2016) An update on probiotics, prebiotics and symbiotics in clinical nutrition. Endocrinol Nutr 63:482–494

    Article  PubMed  Google Scholar 

  • Ooi LG, Liong M-T (2010) Cholesterol-lowering effects of probiotics and prebiotics: a review of in vivo and in vitro findings. Int J Mol Sci 11:2499–2522

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Otieno DO (2010) Synthesis of β-galactooligosaccharides from lactose using microbial β-galactosidases. Compr Rev Food Sci Food Saf 9:471–482

    Article  CAS  PubMed  Google Scholar 

  • Palframan R, Gibson GR, Rastall RA (2003) Development of a quantitative tool for the comparison of the prebiotic effect of dietary oligosaccharides. Lett Appl Microbiol 37(4):281–284

    Article  PubMed  CAS  Google Scholar 

  • Pandey KR, Naik SR, Vakil BV (2015) Probiotics, prebiotics and synbiotics—a review. J Food Sci Technol 52:7577–7587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parkar SG, Redgate EL, Wibisono R, Luo X, Koh ETH, Schroder R (2010) Gut health benefits of kiwifruit pectins: comparison with commercial functional polysaccharides. J Funct Foods 2:210–218

    Article  CAS  Google Scholar 

  • Patterson JA, Burkholder KM (2003) Application of prebiotics and probiotics in poultry production. Poult Sci 82:627–631

    Article  PubMed  CAS  Google Scholar 

  • Petschacher B, Nidetzky B (2016) Biotechnological production of fucosylated human milk oligosaccharides: prokaryotic fucosyltransferases and their use in biocatalytic cascades or whole cell conversion systems. J Biotechnol 235:61–83

    Article  PubMed  CAS  Google Scholar 

  • Poesen R, Evenepoel P, de Loor H, Delcour JA, Courtin CM et al (2016) The influence of prebiotic arabinoxylan oligosaccharides on microbiota derived uremic retention solutes in patients with chronic kidney disease: a randomized controlled trial. PLoS One 11(4):e0153893. https://doi.org/10.1371/journal.pone.0153893

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pokusaeva K, Fitzgerald GF, van Sinderen D (2011) Carbohydrate metabolism in bifidobacteria. Genes Nutr 6:285–306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ragaee SM, Campbell GL, Scoles GJ, McLeod JG, Tyler RT (2001) Studies on rye (Secale cereale L.) lines exhibiting a range of extract viscosities. 2. Rheological and baking characteristics of rye and rye/wheat blends and feeding value for chicks of wholemeals and breads. J Agric Food Chem 49:2446–2453

    Article  PubMed  CAS  Google Scholar 

  • Rajagopalan G, Shanmugavelu K, Yang K-L (2016) Production of xylooligosaccharides from hardwood xylan by using immobilized endoxylanase of Clostridium strain BOH3. RSC Adv 6:81818–81825

    Article  CAS  Google Scholar 

  • Ravn JL, Thøgersen JC, Eklöf J, Pettersson D, Ducatelle R, Immerseel FV, Pedersen NR (2017) GH11 xylanase increases prebiotic oligosaccharides from wheat bran favouring butyrate-producing bacteria in vitro. Anim Feed Sci Technol 226:113–123

    Article  CAS  Google Scholar 

  • Redgwell RJ, Fischer M (2005) Dietary fiber as a versatile food component: an industrial perspective. Mol Nutr Food Res 49:421–535

    Article  Google Scholar 

  • Rhoades J, Manderson K, Wells A, Hotchkiss AT, Gibson GR, Formentin K et al (2008) Oligosaccharide-mediated inhibition of the adhesion of pathogenic Escherichia coli strains to human gut epithelial cells in vitro. J Food Prot 71:2272–2277

    Article  PubMed  CAS  Google Scholar 

  • Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, de los Reyes-Gavilán CG, Salazar N (2016) Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol 7:185

    Article  PubMed  PubMed Central  Google Scholar 

  • Rivas S, Gullón B, Gullón P, Parajó JC (2012) Manufacture and properties of bifidogenic saccharides derived from wood mannan. J Agric Food Chem 60:4296–4305

    Article  PubMed  CAS  Google Scholar 

  • Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I et al (2010) Prebiotic effects: metabolic and health benefits. Br J Nutr 104(Suppl 2):S1–S63

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Cabezas ME, Camuesco D, Arribas B, Garrido-Mesa N, Comalada M, Bailon E et al (2010) The combination of fructooligosaccharides and resistant starch shows prebiotic additive effects in rats. Clin Nutr 29:832–839

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Colinas B, Poveda A, Jimenez-Barbero J, Ballesteros AO, Plou FJ (2012) Galacto-oligosaccharide synthesis from lactose solution or skim milk using the β-galactosidase from Bacillus circulans. J Agric Food Chem 60:6391–6398

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Colinas B, Fernandez-Arrojo L, Santos-Moriano P, Ballesteros AO, Plou FJ (2016) Continuous packed bed reactor with immobilized β-Galactosidase for production of galactooligosaccharides (GOS). Catalysts 6:189. https://doi.org/10.3390/catal6120189

    Article  CAS  Google Scholar 

  • Rose DJ (2011) Autohydrolytic production of feruloylated arabinoxylan hydrolysates from cereal processing coproducts for food applications. In: Awika J, Piironen V, Bean S (eds) Advances in cereal science: implications to food processing and health promotion, vol 1089. America Chemical Society, Washington, DC, pp 111–130

    Chapter  Google Scholar 

  • Ruhaak LR, Stroble C, Underwoodm MA, Lebrilla CB (2014) Detection of milk oligosaccharides in plasma of infants. Anal Bioanal Chem 406:5775–5784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ruiz-Moyano S, Totten SM, Garrido DA, Smilowitz JT, German JB, Lebrilla CB, Mills DA (2013) Variation in consumption of human milk oligosaccharides by infant gut-associated strains of Bifidobacterium breve. Appl Environ Microbiol 79:6040–6049

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sabater-Molina M, Larqué E, Torrella F, Zamora S (2009) Dietary fructooligosaccharides and potential benefits on health. J Physiol Biochem 65:315–328

    Article  PubMed  CAS  Google Scholar 

  • Sangeetha PT, Ramesh MN, Prapulla SG (2005) Recent trends in the microbial production, analysis and application of fructooligosaccharides. Trends Food Sci Technol 16:442–457

    Article  CAS  Google Scholar 

  • Sangwan V, Tomar SK, Singh RRB, Singh AK, Ali B (2011) Galactooligosaccharides: novel components of designer foods. J Food Sci 76:R103–R111

    Article  PubMed  CAS  Google Scholar 

  • Saulnier L, Thibault JF (1999) Ferulic acid and diferulic acids as components of sugar-beet pectins and maize bran heteroxylans. J Sci Food Agric 79:396–402

    Article  CAS  Google Scholar 

  • Scheperjans F, Aho V, Pereira PAB, Koskinen K, Paulin L, Pekkonen E et al (2015) Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 30:350–358

    Article  PubMed  Google Scholar 

  • Schley PD, Field CJ (2002) The immune-enhancing effects of dietary fibres and prebiotics. Br J Nutr 87(Suppl. 2):S221–S230

    Article  PubMed  CAS  Google Scholar 

  • Scholz-Ahrens KE, Ade P, Marten B, Weber P, Timm WY, Gluer CC, Schrezenmeir J (2007) Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineral content, and bone structure. J Nutr 137:838S–846S

    Article  PubMed  CAS  Google Scholar 

  • Severini C, Azzollini D, Jouppila K, Jussi L, Derossi A (2015) Effect of enzymatic and technological treatments on solubilisation of arabinoxylans from brewer’s spent grain. J Cereal Sci 65:162–166

    Article  CAS  Google Scholar 

  • Sheridan PO, Bindels LB, Saulnier DM, Reid G, Nova E, Holmgren K et al (2014) Can prebiotics and probiotics improve therapeutic outcomes for undernourished individuals? Gut Microbes 5:74–82

    Article  PubMed  Google Scholar 

  • Shoaf K, Mulvey GL, Armstrong GD, Hutkins RW (2006) Prebiotic galactooligosaccharides reduce adherence of enteropathogenic Escherichia coli to tissue culture cells. Infect Immun 74:6920–6928

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Silva E, Birkenhake M, Scholten E, Sagis LMC, van der Linden E (2013) Controlling rheology and structure of sweet potato starch noodles with high broccoli powder content by hydrocolloids. Food Hydrocoll 30:42–52

    Article  CAS  Google Scholar 

  • Slavin J (2013) Fiber and prebiotics: mechanisms and health benefits. Nutrients 5:1417–1435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smilowitz JT, Lebrilla CB, Mills DA, German JB, Freeman SL (2014) Breast milk oligosaccharides: structure-function relationships in the neonate. Annu Rev Nutr 34:14.1–14.27

    Article  CAS  Google Scholar 

  • Smith-Brown P, Morrison M, Krause L, Davies PS (2016) Mother’s secretor status affects development of childrens microbiota composition and function: a pilot study. PLoS One 11:e0161211

    Article  PubMed  PubMed Central  Google Scholar 

  • Sousa V, Santos E, Sgarbieri V (2011) The importance of prebiotics in functional foods and clinical practice. Food Nutr Sci 2:133–144

    Google Scholar 

  • Sousa AG, Nielsen HL, Armagan I, Larsen J, Sorensen SO (2015) The impact of rhamnogalacturonan-I side chain monosaccharides on the rheological properties of citrus pectin. Food Hydrocoll 47:130–139

    Article  CAS  Google Scholar 

  • Sridevi V, Sumathi V, Guru Prasad M, Satish Kumar M (2014) Fructooligosaccharides—type prebiotic: a Review. J Pharm Res 8:321–330

    CAS  Google Scholar 

  • Surin S, Seesuriyachan P, Thakeow P, Phimolsiripol Y (2012) Optimization of enzymatic production of fructooligosaccharides. J Appl Sci 12:1118–1123

    Article  CAS  Google Scholar 

  • Swennen K, Courtin CM, Lindemans GCJE, Delcour JA (2006) Large-scale production and characterisation of wheat bran arabinoxylooligosaccharides. J Sci Food Agric 86:1722–1731

    Article  CAS  Google Scholar 

  • Tester RF, Al-Ghazzewi FH (2010) Utilisation of glucomannans for health. In: Hollingworth CS (ed) Food hydrocolloids: characteristics, properties and structures. Nova Science Publishers, Hauppauge, NY, pp 243–252

    Google Scholar 

  • Thomson P, Medina DA, Garrido D (2017) Human milk oligosaccharides and infant gut bifidobacteria: molecular strategies for their utilization. Food Microbiol. https://doi.org/10.1016/j.fm.2017.09.001

  • Thurl S, Munzert M, Henker J, Boehm G, Muller-Werner B, Jelinek J, Stahl B (2010) Variation of human milk oligosaccharides in relation to milk groups and lactational periods. Br J Nutr 104:1261–1271

    Article  PubMed  CAS  Google Scholar 

  • Tian L, Scholte J, Borewicz K, van den Bogert B, Smidt H, Scheurink AJW et al (2016) Effects of pectin supplementation on the fermentation patterns of different structural carbohydrates in rats. Mol Nutr Food Res 60:2256–2266

    Article  PubMed  CAS  Google Scholar 

  • Torres DPM, Goncalves M d PF, Teixeira JA, Rodrigues LR (2010) Galacto-oligosaccharides: production, properties, applications, and significance as prebiotics. Compr Rev Food Sci Food Saf 9:438–454

    Article  CAS  PubMed  Google Scholar 

  • Turroni F, Ventura M, Butto LF, Duranti S, O’Toole PW, Motherway MO, van Sinderen D (2014) Molecular dialogue between the human gut microbiota and the host: a Lactobacillus and Bifidobacterium perspective. Cell Mol Life Sci 71:183–203

    Article  PubMed  CAS  Google Scholar 

  • Underwood M, German JB, Lebrilla CB, Mills DA (2015) Bifidobacterium longum subspecies infantis: champion colonizer of the infant gut. Pediatr Res 77:229–235

    Article  PubMed  CAS  Google Scholar 

  • van Craeyveld V, Swennen K, Dornez E et al (2008) Structurally different wheat-derived arabinoxylooligosaccharides have different prebiotic and fermentation properties in rats. J Nutr 138:2348–2355

    Article  PubMed  CAS  Google Scholar 

  • van Craeyveld V, Dornez E, Holopainen U, Selinheimo E, Poutanen K et al (2010) Wheat bran AX properties and choice of xylanase affect enzymic production of wheat bran derived arabinoxylan-oligosaccharidesaccharides. Cereal Chem 87:283–291

    Article  CAS  Google Scholar 

  • van de Wiele T, Boon N, Possemiers S, Jacob H, Verstrate W (2007) Inulin-type fructans of longer degree of polymerization exert more pronounced in vitro prebiotic effects. J Appl Microbiol 102:452–460

    PubMed  Google Scholar 

  • van den Abbeele P, Van de Wiele T, Grootaert C, Verstraete W, Gerard P et al (2009) Arabinoxylans and inulin modulate the luminal and mucosaassociated bacteria in vitro and in vivo. In: McCleary B, Jones JM, Topping D, van der Kamp JW (eds) Dietary fibre—new frontiers for food and health. Academic Publishers, Wageningen, pp 233–249

    Google Scholar 

  • van den Heuvela EGHM, Muijsa T, Brouns F, Hendriksa HFJ (2009) Short-chain fructo-oligosaccharides improve magnesium absorption in adolescent girls with a low calcium intake. Nutr Res 29:229–237

    Article  CAS  Google Scholar 

  • Venema K (2012) Intestinal fermentation of lactose and prebiotic lactose derivatives, including human milk oligosaccharides. Int Dairy J 22:123–140

    Article  CAS  Google Scholar 

  • Vera C, Guerrero C, Conejeros R, lllanes A (2012) Synthesis of galactoligosaccharides by β-galactosidase from Aspergillus oryzae using partially dissolved and supersaturated solution of lactose. Enzym Microb Technol 50:188–194

    Article  CAS  Google Scholar 

  • Villamiel M, Montilla A, Olano A, Corzo N (2014) Production and bioactivity of oligosaccharides derived from lactose. In: Moreno FJ, Sanz ML (eds) Food oligosaccharides: production, analysis and bioactivity. Wiley-Blackwell, pp 137–167

    Google Scholar 

  • Wall R, Fitzgerald G, Hussey S, Ryan T, Murphy B, Ross P, Stanton C (2007) Genomic diversity of cultivable Lactobacillus populations residing in the neonatal and adult gastrointestinal tract. FEMS Microbiol Ecol 59:127–137

    Article  PubMed  CAS  Google Scholar 

  • Wang B (2009) Sialic acid is an essential nutrient for brain development and cognition. Annu Rev Nutr 29:177–222

    Article  PubMed  Google Scholar 

  • Wang D, Wang S-A (2016) A one-step bioprocess for production of high-content fructo-oligosaccharides from inulin by yeast. Carbohydr Polym 151:1220–1226

    Article  PubMed  CAS  Google Scholar 

  • Wang M, van Vliet T, Hamer RJ (2004) How gluten properties are affected by pentosans. J Cereal Sci 39:395–402

    Article  CAS  Google Scholar 

  • Wang Y, Zeng T, Wang SE, Wang Q, Yu HX (2010) Fructo-oligosaccharides enhance the mineral absorption and counteract the adverse effects of phytic acid in mice. Nutrition 26:305–311

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Chen Q, Lu¨ X (2014) Pectin extracted from apple pomace and citrus peel by subcritical water. Food Hydrocoll 38:129–137

    Article  CAS  Google Scholar 

  • Wang W, Ma X, Xu Y, Cao Y, Jiang Z, Ding T et al (2015a) Ultrasound-assisted heating extraction of pectin from grapefruit peel: optimization and comparison with the conventional method. Food Chem 178:106–114

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Jiang K, Ma H, Zeng W, Wang PG, Yao N, Han W et al (2015b) Enzymatic production of HMO mimics by the sialylation of galacto-oligosaccharides. Food Chem 181:51–56

    Article  PubMed  CAS  Google Scholar 

  • Watson D, O’Connell Motherway M, Schoterman MH, van Neerven RJ, Nauta A, van Sinderen D (2013) Selective carbohydrate utilization by lactobacilli and bifidobacteria. J Appl Microbiol 114:1132–1146

    Article  PubMed  CAS  Google Scholar 

  • Wickramasinghe S, Pacheco AR, Lemay DG, Mills DA (2015) Bifidobacteria grown on human milk oligosaccharides downregulate the expression of inflammation-related genes in Caco-2 cells. BMC Microbiol 15:172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu LD, Ruhaak LR, Lebrilla CB (2017) Analysis of milk oligosaccharides by mass spectrometry. Methods Mol Biol 1503:121–129

    Article  PubMed  CAS  Google Scholar 

  • Xu ZR, Zou XT, Hu CH, Xia MS, Zhan XA, Wang MQ (2002) Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of growing pigs. Asian Australas J Anim Sci 15:1784–1789

    Article  CAS  Google Scholar 

  • Xu BH, Wang YB, Li JR, Lin Q (2009) Effect of prebiotic xylooligosaccharides on growth performances and digestive enzyme activities of allogynogenetic crucian carp (Carassius auratus gibelio). Fish Physiol Biochem 35:351–357

    Article  PubMed  CAS  Google Scholar 

  • Xu M, Li D-S, Li L, Wang C, Zhu Y-P, Lv W-P, Xie B-J (2013) Comparative study on molecular weight of konjac glucomannan by gel permeation chromatography-laser light scattering-refractive index and laser light-scattering methods. J Spectrosc 2013:685698

    Google Scholar 

  • Yan J, Ding J, Liang X (2017) Chromatographic methods for the analysis of oligosaccharides in human milk. Anal Methods 9:1071–1077

    Article  CAS  Google Scholar 

  • Yang B, Chuang H, Chen RF (2012) Protection from viral infections by human milk oligosaccharides: direct blockade and indirect modulation of intestinal ecology and immune reactions. Open Glycosci 5:19–25

    Article  CAS  Google Scholar 

  • Yang J, Vittori N, Wang W-W, Shi Y-C, Hoeflinger JL, Miller MJ, Pan Y (2017) Molecular weight distribution and fermentation of mechanically pre-treated konjac enzymatic hydrolysates. Carbohydr Polym 159:58–65

    Article  PubMed  CAS  Google Scholar 

  • Yapo BM (2011) Pectic substances: from simple pectic polysaccharides to complex pectins—a new hypothetical model. Carbohydr Polym 86:373–385

    Article  CAS  Google Scholar 

  • Yuliarti O, Goh KKT, Matia-Merino L, Mawson J, Brennan C (2015) Extraction and characterisation of pomace pectin from gold kiwifruit (Actinidiachinensis). Food Chem 187:290–296

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Pitkänen L, Douglade J, Tenkanen M, Remond C, Joly C (2011) Wheat bran arabinoxylans: chemical structure and film properties of three isolated fractions. Carbohydr Polym 86:852–859

    Article  CAS  Google Scholar 

  • Zhang L, Ye X, Ding T, Sun X, Xu Y, Liu D (2013) Ultrasound effects on thedegradation kinetics, structure, and rheological properties of apple pectin. Ultrason Sonochem 20:222–231

    Article  PubMed  CAS  Google Scholar 

  • Zhang SY, Li W, Smith CJ, Musa H (2015a) Cereal-derived arabinoxylans as biological response modifiers: extraction, molecular features, and immune-stimulating properties. Crit Rev Food Sci Nutr 55:1035–1052

    Article  PubMed  CAS  Google Scholar 

  • Zhang YJ, Li S, Gan R-Y, Zhou T, Xu D-P, Li H-B (2015b) Impacts of gut bacteria on human health and diseases. Int J Mol Sci 16:7493–7519

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zia F, Zia KM, Zuber M, Ahmad HB, Muneer M (2016) Glucomannan based polyurethanes: a critical short review of recent advances and future perspectives. Int J Biol Macromol 87:229–236

    Article  PubMed  CAS  Google Scholar 

  • Zivkovic A, German JB, Lebrilla CB, Mills DA (2011) Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc Natl Acad Sci U S A 108:4653–4658

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, J., Xu, Y. (2018). Functional Carbohydrate Polymers: Prebiotics. In: Gutiérrez, T. (eds) Polymers for Food Applications . Springer, Cham. https://doi.org/10.1007/978-3-319-94625-2_24

Download citation

Publish with us

Policies and ethics