Skip to main content

Food Gel Emulsions: Structural Characteristics and Viscoelastic Behavior

  • Chapter
  • First Online:

Abstract

If the continuous phase of an emulsion or foam is a semisolid system, these systems can be described as ‘filled gels’ or ‘composite solids’. Gel emulsions are widely used in different industries like cosmetic, pharmaceutical, and food, among others. Typical examples are cheese, many desserts, sausages, low-fat mayonnaises and bakery products. The aggregation and cross-linking of protein and polysaccharides molecules into three-dimensional solid-like networks (‘gels’) is one of the most important mechanisms for developing microstructure with desirable textural attributes. Due to their elastic characteristics, oil droplets can be kept in suspension avoiding creaming. The structure and the rheological properties of gel emulsions are dependent on the nature of the interactions between the emulsifiers adsorbed on the surface of the droplets that fill the emulsion and the biopolymeric network formed in the aqueous phase. The present chapter deals with the viscoelastic behavior of o/w gel emulsions containing either polysaccharides or proteins in the aqueous phase. Two case studies are discussed, i.e., emulsions with low lipid content, stabilized with bovine gelatin of different molecular weights and heat-induced gel emulsions containing high acyl gellan gum. Small amplitude oscillatory shear tests (stress and frequency sweeps) and transient studies (creep-recovery) were performed over the different matrices and modeled to interpret the structural characteristics of the gel emulsions. The Broadened Baumgaertel-Schausberger-Winter spectrum was used to represent the linear viscoelastic behavior of the continuous phase and the emulsified system. Relaxation spectra were validated using creep experiments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anton M, Le Denmat M, Beaumal V (2001) Filler effects of oil droplets on the rheology of heat-set emulsion gels prepared with egg yolk and egg yolk fractions. Colloids Surf B Biointerfaces 21:137–147

    Article  CAS  PubMed  Google Scholar 

  • Bais D, Trevisan A, Lapasin R et al (2005) Rheological characterization of polysaccharide-surfactant matrices for cosmetic o/w emulsions. J Colloid Interface Sci 290:546–556

    Article  CAS  PubMed  Google Scholar 

  • Baumgaertel M, Winter HH (1989) Determination of discrete relaxation and retardation time spectra from dynamic mechanical data. Rheol Acta 28:511–519

    Article  CAS  Google Scholar 

  • Baumgaertel M, Winter HH (1992) Interrelation between continuous and discrete relaxation time spectra. J Non-Newtonian Fluid Mech 44:15–36

    Article  CAS  Google Scholar 

  • Bot A, van Amerongen IA, Groot RD et al (1996) Large deformation rheology of gelatin gels. Polym Gels Netw 4:189–227

    Article  CAS  Google Scholar 

  • Chen J, Dickinson E (1999) Effect of surface character of filler particles on rheology of heat-set whey protein emulsion gels. Colloids Surf B Biointerfaces 12:373–381

    Article  CAS  Google Scholar 

  • Dickinson E (2006) Colloid science of mixed ingredients. Soft Matter 2:642–652

    Article  CAS  Google Scholar 

  • Dickinson E (2010) Food emulsions and foams: stabilization by particles. Curr Opin Colloid Interface Sci 15:40–49

    Article  CAS  Google Scholar 

  • Dickinson E (2012) Emulsion gels: the structuring of soft solids with protein-stabilized oil droplets. Food Hydrocoll 28:224–241

    Article  CAS  Google Scholar 

  • Dickinson E, Lopez G (2001) Comparison of the emulsifying properties of fish gelatin and commercial milk proteins. J Food Sci 66:118–123

    Article  CAS  Google Scholar 

  • Doublier JL, Launay B, Cuvelier G (1992) Viscoelastic properties of food gels. In: Rao MA, Steffe JF (eds) Viscoelastic properties of foods. Elsevier Science, Barking, pp 371–434

    Google Scholar 

  • Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New York, pp 56–79, 366–403

    Google Scholar 

  • Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, New York

    Google Scholar 

  • Friedrich CHR, Heymann L (1988) Extension of a model for crosslinking polymer at the gel point. J Rheol 32:235–241

    Article  CAS  Google Scholar 

  • Garti N (1999) What can nature offer from an emulsifier point of view: trends and progress? Colloids Surf A Physicochem Eng Asp 152:125–146

    Article  CAS  Google Scholar 

  • Garti N, Slavin Y, Aserin A (1999) Surface and emulsification properties of a new gum extracted from Portulaca oleracea L. Food Hydrocoll 13:145–155

    Article  CAS  Google Scholar 

  • Gidley MJ, Nishinari K (2009) Physico-chemistry of (1,3)-β-glucans. In: Bacic A, Fincher JB, Stone BA (eds) Chemistry, biochemistry, and biology of 1–3 beta glucans and related polysaccharides. Academic Press, San Diego, pp 47–118

    Chapter  Google Scholar 

  • Goh KKT, Hainsman DR, Singh H (2006) Characterization of a high acyl gellan polysaccharide using light scattering and rheological techniques. Food Hydrocoll 20:176–183

    Article  CAS  Google Scholar 

  • Graessley WW (1974) The entanglement concept in polymer rheology. Adv Polym Sci 16:1–179

    Article  Google Scholar 

  • Grasdalen H, Smidsrod O (1987) Gelation of gellan gum. Carbohydr Polym 7(5):371–393

    Article  CAS  Google Scholar 

  • Grassi M, Lapasin R, Pricl S (1996) A study of the rheological behavior of scleroglucan weak gel systems. Carbohydr Polym 29:169–181

    Article  CAS  Google Scholar 

  • Harrington WF, Rao NV (1970) Collagen structure in solution. I. Kinetics of helix regeneration in single-chain gelatins. Biochemistry 19:3714–3724

    Article  Google Scholar 

  • Honerkamp J, Weese J (1993) A nonlinear regularization method for the calculation of relaxation spectra. Rheol Acta 32:65–73

    Article  CAS  Google Scholar 

  • Huang Y, Tang J, Swanson BG et al (2003) Effect of calcium concentration on textural properties of high and low acyl mixed gellan gels. Carbohydr Polym 54(4):517–522

    Article  CAS  Google Scholar 

  • Ikeda S, Nitta Y, Temsiripong T et al (2004) Atomic force microscopy studies on cation-induced network formation of gellan. Food Hydrocoll 18:727–735

    Article  CAS  Google Scholar 

  • Izuka A, Winter HH, Hashimoto T (1992) Molecular weight dependence of viscoelasticity of polycaprolactone critical gels. Macromolecules 25:2422–2428

    Article  CAS  Google Scholar 

  • Jackson JK, De Rosa ME, Winter HH (1994) Molecular weight dependence of relaxation time spectra for the entanglement and flow behavior of monodisperse linear flexible polymers. Macromolecules 27:2426–2431

    Article  CAS  Google Scholar 

  • Jansson PE, Lindberg B, Sandford PA (1983) Structural studies of gellan gum, an extracellular polysaccharide elaborated by Pseudomonas elodea. Carbohydr Res 124:135–139

    Article  CAS  Google Scholar 

  • Jiménez-Avalos HA, Ramos-Ramírez EG, Salazar-Montoya JA (2005) Viscoelastic characterization of gum arabic and maize starch mixture using the Maxwell model. Carbohydr Polym 62:11–18

    Article  CAS  Google Scholar 

  • Kaschta J, Schwarzl ER (1994) Calculation of discrete retardation spectra from creep data- II. Analysis of measured creep curves. Rheol Acta 33:530–541

    Article  CAS  Google Scholar 

  • Keenan TR (1998) Gelatin. In: Domb AJ, Kost J, Wiseman D (eds) Handbook of biodegradable Polymers. CRC Press, pp 307–317

    Google Scholar 

  • Kim KH, Renkema JMS, Vliet TV (2001) Rheological properties of soybean protein isolate gels containing emulsion droplets. Food Hydrocoll 15:295–302

    Article  CAS  Google Scholar 

  • Kirschner KN, Woods RJ (2001) Solvent interactions determine carbohydrate conformation. Proc Natl Acad Sci USA 98:10541–10545

    Article  CAS  PubMed  Google Scholar 

  • Koenig A, Hébraud P, Perrin P (2002) Preparation and rheological properties of emulsion gels. Langmuir 18:6458–6461

    Article  CAS  Google Scholar 

  • Kokini J, van Aken G (2006) Discussion session on food emulsions and foams. Food Hydrocoll 20:438–445

    Article  CAS  Google Scholar 

  • Kuo MS, Mort AJ, Dell A (1986) Identification and location of L-glycerate, an unusual acyl substituent in gellan gum. Carbohydr Res 156:173–187

    Article  CAS  Google Scholar 

  • Lapasin R, Pricl S (1995) Rheology of industrial polysaccharides: theory and applications. Blackie Academic & Professional, Glasgow, pp 63–83, 373–423

    Book  Google Scholar 

  • Ledward DA (1986) Gelation of gelatin. In: Mitchell JR, Ledward DA (eds) Functional properties of food macromolecules. Elsevier, New York, pp 171–201

    Google Scholar 

  • Lobo L (2002) Coalescence during emulsification. 3. Effect of gelatin on rupture and coalescence. J Colloid Interface Sci 254:165–174

    PubMed  CAS  Google Scholar 

  • Lorenzo G, Checmarev G, Zaritzky N et al (2011) Linear viscoelastic assessment of cold gel-like emulsions stabilized with bovine gelatin. LWT Food Sci Technol 44:457–464

    Article  CAS  Google Scholar 

  • Lorenzo G, Zaritzky NE, Califano A (2008) Optimization of non-fermented gluten-free dough composition based on rheological behavior for industrial production of “empanadas and pie-crusts”. J Cereal Sci 48:224–231

    Article  CAS  Google Scholar 

  • Lorenzo G, Zaritzky NE, Califano A (2013) Rheological analysis of emulsion-filled gels based on high acyl gellan gum. Food Hydrocoll 30:672–680

    Article  CAS  Google Scholar 

  • Malkin AY (2006) Continuous relaxation spectrum—its advantages and methods of calculation. Int J Applied Mech Eng 11:235–243

    Google Scholar 

  • Manca S, Lapasin R, Partal P, Gallegos C (2001) Influence of surfactant addition on the rheological properties of aqueous Welan matrices. Rheol Acta 40:128–134

    Article  CAS  Google Scholar 

  • Manoi K, Rizvi SSH (2009) Emulsification mechanisms and characterizations of cold, gel-like emulsions produced from texturized whey protein concentrate. Food Hydrocoll 23:1837–1847

    Article  CAS  Google Scholar 

  • McClements DJ (1999) Food emulsions: principles, practice and techniques. CRC Press, Boca Raton, pp 185–265

    Google Scholar 

  • Mitchell JR (1976) Rheology of gels. J Texture Stud 7:313–339

    Article  CAS  Google Scholar 

  • Mitchell JR, Blanshard JMV (1976) Rheological properties of alginate gels. J Texture Stud 7:219–234

    Article  CAS  Google Scholar 

  • Moresi M, Bruno M, Parente E (2004) Viscoelastic properties of microbial alginate gels by oscillatory dynamic tests. J Food Eng 64:179–186

    Article  Google Scholar 

  • Moritaka H, Nishinari K, Taki M et al (1995) Effects of pH, potassium chloride, and sodium chloride on the thermal and rheological properties of gellan gum gels. J Agric Food Chem 43:1685–1689

    Article  CAS  Google Scholar 

  • Morris ER, Gothard MGE, Hember MWN et al (1996) Conformational and rheological transitions of welan, rhamsan and acylated gellan. Carbohydr Polym 30:165–175

    Article  CAS  Google Scholar 

  • Morris ER, Rees DA, Robinson G (1980) Cation-specific aggregation of carrageenan helices: domain model of polymer gel structure. J Mol Biol 138(2):349–362

    Article  CAS  PubMed  Google Scholar 

  • Mours M, Winter HH (2000) Mechanical spectroscopy. In: Tanaka T (ed) Methods in polymer science: modern methods in polymer research and technology. Academic Press, San Diego, pp 495–546

    Chapter  Google Scholar 

  • Muller HJ, Hermel H (1994) On the relation between the molecular mass distribution of gelatin and its ability to stabilize emulsions. Colloid Polym Sci 272:433–439

    Article  Google Scholar 

  • Normand V, Ravey JC (1997) Dynamic study of gelatin gels by creep measurements. Rheol Acta 36:610–617

    Article  CAS  Google Scholar 

  • Olivares ML, Peirotti MB, Deiber JA (2006) Analysis of gelatin chain aggregation in dilute aqueous solutions through viscosity data. Food Hydrocoll 20:1039–1049

    Article  CAS  Google Scholar 

  • O’Neill MA, Selvendran RR, Morris VJ (1983) Structure of the acidic extracellular gelling polysaccharide produced by Pseudomonas elodea. Carbohydr Res 124:123–133

    Article  Google Scholar 

  • Ottone ML, Deiber JA (2005) Modeling the rheology of gelatin gels for finite deformations. Part 1. Elastic rheological model. Polymer 46:4928–4937

    Article  CAS  Google Scholar 

  • Rao MA (2007) Rheology of fluids, semisolids, and solid foods. Principles and applications. Springer, New York, pp 331–390

    Book  Google Scholar 

  • Reiffers-Magnani CK, Cuq JL, Watzke HJ (1999) Composite structure formation in whey protein stabilized O/W emulsions. I. Influence of the dispersed phase on viscoelastic properties. Food Hydrocoll 13:303–316

    Article  Google Scholar 

  • Rodríguez-Hernández AI, Durand S, Garnier C et al (2003) Rheology-structure properties of gellan systems: Evidence of network formation at low gellan concentrations. Food Hydrocoll 17:621–628

    Article  CAS  Google Scholar 

  • de Rosa ME, Winter HH (1994) The effect of entanglements on the rheological behavior of polybutadiene critical gels. Rheol Acta 33:220–237

    Article  Google Scholar 

  • Segeren AJM, Boskamp JV, van den Tempel M (1974) Rheological and swelling behaviour of alginate gels. Faraday Discuss 57:255–262

    Article  CAS  Google Scholar 

  • Shakuntala N, Manay O (2001) Food: facts and principles. New Age International Ltd, New Delhi, pp 376–394

    Google Scholar 

  • Steffe JF (1996) Rheological methods in food process engineering. Freeman Press, East Lansing, pp 294–348

    Google Scholar 

  • Surh J, Decker EA, McClements J (2006) Properties and stability of oil-in water emulsions stabilized by fish gelatin. Food Hydrocoll 20:596–606

    Article  CAS  Google Scholar 

  • Sworn G (2000) Gellan gum. In: Phillips GO, Williams PA (eds) Handbook of hydrocolloids. Woodhead Publishing Limited, Cambridge, pp 117–135

    Google Scholar 

  • Tschoegl NW (1997) Time dependence in material properties: an overview. Mech Time-Depend Mater 1:3–31

    Article  Google Scholar 

  • de Wolf FA (2003) Collagen and gelatin. In: Aalbersberg WY et al (eds) Progress in biotechnology, vol 23. Elsevier Science BV, Amsterdam, pp 133–218

    Google Scholar 

  • van Vliet T, Lakemond CMM, Visschers RW (2004) Rheology and structure of milk protein gels. Curr Opin Colloid Interface Sci 9:298–304

    Article  CAS  Google Scholar 

  • Vilela JAP, Lopes da Cunha R (2016) High acyl gellan as an emulsion stabilizer. Carbohydr Polym 139:115–124

    Article  CAS  PubMed  Google Scholar 

  • Whistler RL (1993) Introduction to industrial gums. In: Whistler RL, JN BM (eds) Industrial gums: polysaccharides and their derivatives. Academic Press, San Diego, pp 1–20

    Google Scholar 

  • Wilde PJ (2000) Interfaces: their role in foam and emulsion behaviour. Curr Opin Colloid Interface Sci 5:176–181

    Article  CAS  Google Scholar 

  • Winter HH (1997) Analysis of dynamic mechanical data: inversion into a relaxation time spectrum and consistency check. J Non-Newtonian Fluid Mech 68:225–239

    Article  CAS  Google Scholar 

  • Winter HH, Mours M (2006) The cyber infrastructure initiative for rheology. Rheol Acta 45:331–338

    Article  CAS  Google Scholar 

  • Yamamoto F, Cunha RL (2007) Acid gelation of gellan: effect of final pH and heat treatment conditions. Carbohydr Polym 68:517–527

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to CP Kelco (San Diego, CA) and PB Leiner Argentina, who kindly provided the gellan gum and gelatin used for this study. The financial support of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Agencia Nacional de Promoción Científica y Tecnológica, and Universidad Nacional de La Plata are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noemí Zaritzky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lorenzo, G., Zaritzky, N., Califano, A. (2018). Food Gel Emulsions: Structural Characteristics and Viscoelastic Behavior. In: Gutiérrez, T. (eds) Polymers for Food Applications . Springer, Cham. https://doi.org/10.1007/978-3-319-94625-2_18

Download citation

Publish with us

Policies and ethics