Skip to main content

Determination of Cognitive Assistance Functions for Manual Assembly Systems

  • Conference paper
  • First Online:
Advances in Human Factors in Wearable Technologies and Game Design (AHFE 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 795))

Included in the following conference series:

Abstract

Since a growing number of variants increase complexity in today’s production systems, higher flexibility is needed. However, automated production systems are often not economical in high-variant production scenarios. Therefore, human flexibility plays an important role, especially for assembly tasks. In order to increase human flexibility in manual assembly a variety of assistance systems providing cognitive support for individual workers has been developed in recent years. Cognitive assistance systems can support assembly workers by providing, processing or collecting information. This paper presents an approach to determine cognitive assistance functions in manual assembly. The need for different assistance functions is investigated in order to make a needs-based selection. The results can then be matched with suitable technologies to design an assistance system. An application of this approach is shown for a manual assembly system in the learning factory for cyber-physical production systems in Augsburg, Germany.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reinhart, G.: Handbuch Industrie 4.0. Carl Hanser, München (2017)

    Google Scholar 

  2. Spath, D., Ganschar, O., Gerlach, S., Hämmerle, M., Krause, T., Schlund, S.: Produktionsarbeit der Zukunft - Industrie 4.0. Fraunhofer Verlag, Stuttgart (2013)

    Google Scholar 

  3. Schuh, G.: Produktkomplexität managen. Carl Hanser, München (2005)

    Book  Google Scholar 

  4. Abele, E., Reinhart, G.: Zukunft der Produktion. Carl Hanser, München (2011)

    Book  Google Scholar 

  5. Gairola, A.: Montagegerechtes Konstruieren. Ein Beitrag zur Konstruktionsmethodik. TH Darmstadt (1981)

    Google Scholar 

  6. Eversheim, W.: Organisation in der Produktionstechnik Band 1. VDI-Verlag, Düsseldorf (1996)

    Book  Google Scholar 

  7. Lang, S.: Durchgängige Mitarbeiterinformation zur Steigerung von Effizienz und Prozesssicherheit in der Produktion. Meisenbach Verlag, Bamberg (2007)

    Google Scholar 

  8. Günthner, W., Klenk, E., Tenerowicz-Wirth, P.: Adaptive Logistiksysteme als Wegbereiter der Industrie 4.0. In: Bauernhansl, T., ten Homel, M., Vogel-Heuser, B. (eds.) Industrie 4.0 in Produktion, Automatisierung und Logistik, pp. 297–323. Springer, Wiesbaden (2014)

    Chapter  Google Scholar 

  9. Samy, S.N., ElMaraghy, H.: A model for measuring products assembly complexity. Int. J. Comput. Integr. Manuf. 23(11), 1015–1027 (2010)

    Article  Google Scholar 

  10. Zeltzer, L., Limère, V., Van Landeghem, H., Aghezzaf, E., Stahre, J.: Measuring complexity in mixed-model assembly workstations. Int. J. Prod. Res. 51(15), 4630–4643 (2013)

    Article  Google Scholar 

  11. Zaeh, M.F., Wiesbeck, M., Stork, S., Schuböh, A.: A multi-dimensional measure for determining the complexity of manual assembly operations. Prod. Eng. Res. Dev. 3, 489–496 (2009)

    Article  Google Scholar 

  12. Claeys, A., Hoedt, S., Soete, N., Van Landeghem, H., Cottyn, J.: Framework for evaluating cognitive support in mixed model assembly systems. IFAC-PapersOnLine 48(3), 924–929 (2015)

    Article  Google Scholar 

  13. Hold, P., Erold, S., Reisinger, G., Sihn, W.: Planning and evaluation of digital assistance systems. Procedia Manuf. 9, 143–150 (2017)

    Article  Google Scholar 

  14. Wilson, R., Hill, A.V.: The Operations Management Complete Toolbox. Pearson Education, London (2013)

    Google Scholar 

  15. Merkel, L., Berger, C., Schultz, C., Braunreuther, S., Reinhart, G.: Application-specific design of assistance systems for manual work in production. In: IEEE International Conference on Industrial Engineering and Engineering Management, Singapore (2017)

    Google Scholar 

  16. Merkel, L., Atug, J., Merhar, L., Schultz, C., Braunreuther, S., Reinhart, G.: Teaching smart production: an insight into the learning factory for cyber-physical production systems (LVP). Procedia Manuf. 9, 269–274 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Merkel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Merkel, L., Berger, C., Braunreuther, S., Reinhart, G. (2019). Determination of Cognitive Assistance Functions for Manual Assembly Systems. In: Ahram, T. (eds) Advances in Human Factors in Wearable Technologies and Game Design. AHFE 2018. Advances in Intelligent Systems and Computing, vol 795. Springer, Cham. https://doi.org/10.1007/978-3-319-94619-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94619-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94618-4

  • Online ISBN: 978-3-319-94619-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics