Skip to main content

Role of Interstellar Molecules on Evolution of Cosmic Deuteration: An ALMA Observation as a Case in Point

  • Conference paper
  • First Online:
Exploring the Universe: From Near Space to Extra-Galactic

Part of the book series: Astrophysics and Space Science Proceedings ((ASSSP,volume 53))

  • 985 Accesses

Abstract

The primordial atomic D/H ratio in the interstellar medium is ∼ 10−5. There is no known source in the Universe which produces atomic deuterium. Hence, the order of cosmic deuteration is similar to the primordial D/H ratio. Despite such low D/H ratio, many deuterated molecules are seen to be heavily fractionated compared to its hydrogenated counterpart. Interstellar chemistry and zero-point energy difference in deuterated species are the main cause of it. In this article, we discuss the deuterium fractionation of interstellar molecules under different molecular cloud condition, ranging from cold prestellar condition to hot protostar condition. We also discuss, how deuterium fractionation in interstellar molecules could be used as an evolutionary tracer of molecular clouds. As an example of an interstellar deuterated molecule, we discuss here an ALMA observation of deuterated formaldehyde in the low-mass protostar system HH212.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barrett, A.H., Lilly, A.E.: AJ 62, 5 (1957)

    Article  ADS  Google Scholar 

  2. Bianchi, E., et al.: A&A 606, L7 (2017)

    Article  ADS  Google Scholar 

  3. Caselli, C., Stantcheva, T., et al.: Plan. and space sci. 50, 1257 (2002)

    Google Scholar 

  4. Cazaux, S., Caselli, P., Spaans, M.: ApJ 741, L34 (2011)

    Article  ADS  Google Scholar 

  5. Ceccarelli, C., Dominik, C.: A&A 440, 583 (2005)

    Article  ADS  Google Scholar 

  6. Chen, H.-R., Liu, S.-Y., Su, Y.-N., Wang, M.-Y.: ApJ 743, 196 (2011)

    Article  ADS  Google Scholar 

  7. Codella, C., et al.: A&A 568, L5 (2014)

    Article  ADS  Google Scholar 

  8. Croswell, K., Dalgarno, A.: ApJ 289, 618 (1985)

    Article  ADS  Google Scholar 

  9. Das, A., Majumdar, L., Chakrabarti, S.K., Sahu, D.: New Astron. 35, 53 (2015)

    Article  ADS  Google Scholar 

  10. Das, A., Majumdar, L., Sahu, D., Gorai, P., Sivaraman, B., Chakrabarti, S.K.: ApJ 808, 21 (2015)

    Article  ADS  Google Scholar 

  11. Das, A., Sahu, D., Majumdar, L., Chakrabarti, S.K.: MNRAS 455, 540–551 (2016)

    Article  ADS  Google Scholar 

  12. Epstein, R.I., Lattimer, J.M., Schramm, D.N.: Nature 263, 198 (1976)

    Article  ADS  Google Scholar 

  13. Fontani, F., Caselli, P., Crapsi, A., et al.: A&A 460, 709 (2006)

    Article  ADS  Google Scholar 

  14. Fontani, F., Palau, A., Caselli, P., et al.: A&A 529, L7 (2011)

    Article  ADS  Google Scholar 

  15. Furuya, K., Drozdovskaya, M.N., Visser, R., van Dishoeck, E.F., Walsh, C., Harsono, D., Hincelin, U., Taquet, V.: A&A 599, 40 (2017)

    Article  Google Scholar 

  16. Herzberg, G.: Spectra of Diatomic Molecules, p. 496. Van Nostrand Reinhold, New York (1950)

    Google Scholar 

  17. Kraus, J.D.: Radio Astronomy, p. 101. Cygnus-Quasar, Powell (1986)

    Google Scholar 

  18. Lee, C.-F., Ho, P.T.P., Hirano, N., et al.: ApJ 659, 499 (2007)

    Article  ADS  Google Scholar 

  19. Lee, C.-F., Hirano, N., Zhang, Q., Shang, H., Ho, P.T.P., Krasnopolsky, R.: ApJ 786, 114 (2014)

    Article  ADS  Google Scholar 

  20. Lee, C.-F., Li, Z.-Y., Ho, P.T.P., Hirano, N., Zhang, Q., Shang, H.: ApJ 843, 27 (2017)

    Article  ADS  Google Scholar 

  21. Lis, D.C., Roueff, E., Gerin, M., Phillips, T.G., Coudert, L.H., van der Tak, F.F.S., van der Tak, F.F.S., Schilke, P.: ApJ 571, L55 (2002)

    Article  ADS  Google Scholar 

  22. Millar, T.J.: Plasma Sources Sci. Technol. 24, 043001, 31pp. (2015)

    Article  ADS  Google Scholar 

  23. Parise, B., Ceccarelli, C., Tielens, A.G.G.M., Castets, A., Caux, E., Lefloch, B., Maret, S.: A& A 453, 949 (2006)

    Article  ADS  Google Scholar 

  24. Penzias, A.A., Wilson, R.W.: ApJ 142, 419 (1965)

    Article  ADS  Google Scholar 

  25. Persson, M.V., Jørgensen, J.K., van Dishoeck, E.F.: A&A 549, L3 (2013)

    Article  ADS  Google Scholar 

  26. Persson, M.V., Jørgensen, J.K., van Dishoeck, E., Harsono, D.: ApJ 563, 74 (2014)

    Google Scholar 

  27. Pillai, T., Wyrowski, F., Hatchell, J., Gibb, A.G., Thompson, M.A.: A&A 467, 207 (2007)

    Article  ADS  Google Scholar 

  28. Prodanovi’c, T., Fields, B.D.: Astrophys. J. 597, 48 (2003)

    Article  ADS  Google Scholar 

  29. Reeves, H., Audouze, J., Fowler, W., Schramm, D.N.: ApJ 179, 909 (1973)

    Article  ADS  Google Scholar 

  30. Roberts, H., Millar, T.J.: A&A 471, 849 (2007)

    Article  ADS  Google Scholar 

  31. Sahu, D., Das, A., Majumdar, L., Chakrabarti, S.K.: New Astron. 38, 23 (2015)

    Article  ADS  Google Scholar 

  32. Sahu, D., Minh, Y.-C., Lee, C.-F., et al.: MNRAS 475, 5322 (2018)

    Article  ADS  Google Scholar 

  33. Spezzano, S., Caselli, P., Bizzocchi, L., Giuliano, B.M., Lattanzi, V.: A&A 606, 25pp. (2017)

    Google Scholar 

  34. Swings, P., Rosenfeld, L.: ApJ 86, 483 (1937)

    Article  ADS  Google Scholar 

  35. Taquet, V., Ceccarelli, C., Kahane, C.: ApJ 748, L3 (2012)

    Article  ADS  Google Scholar 

  36. Walmsley, C.M., Flower, D.R., Pineau Des Forêts, G.: A&A 418, 1035 (2004)

    ADS  Google Scholar 

  37. Weinreb, S., Barrett, A.H., Meeks M.L., Henry, J.C.: Nature 200, 829 (1963)

    Article  ADS  Google Scholar 

  38. Wilson, R.W., Jefferts, K.B., Penzias, A.A.: ApJL 161, L43 (1970)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I want to thank my supervisors Dr. Ankan Das and Prof. Sandip K. Chakrabarti for introducing me into the subject- Astrochemistry. I appreciate the effort of the Editors, for giving me a chance to write in this Festschrift.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sahu, D. (2018). Role of Interstellar Molecules on Evolution of Cosmic Deuteration: An ALMA Observation as a Case in Point. In: Mukhopadhyay, B., Sasmal, S. (eds) Exploring the Universe: From Near Space to Extra-Galactic. Astrophysics and Space Science Proceedings, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-319-94607-8_37

Download citation

Publish with us

Policies and ethics