Skip to main content

The Interstellar Molecular Complexity

  • Conference paper
  • First Online:
Exploring the Universe: From Near Space to Extra-Galactic

Part of the book series: Astrophysics and Space Science Proceedings ((ASSSP,volume 53))

  • 1014 Accesses

Abstract

One of the major questions of ‘Cradle of Life’ science theme of astronomy is how, when and where complex organic molecules, including the so-called prebiotic molecules, are formed. Key questions are: (1) which are the physicochemical processes that are involved in their production/destruction? and (2) whether grain surface processes or gas phase reactions prevail in their formation. Because of the success of large ground-based single dish telescopes (e.g. NRO 45 m, IRAM 30 m, GBT, ARO 12 m and NASA DSN) and interferometers (e.g. ALMA, NOEMA, and SMA) and space observatories (ISO, Spitzer, and Herschel), an interdisciplinary field has developed extending from astronomical instrumentation and observatories to laboratory astrophysics to theoretical chemical-dynamical modelings and to high level quantum computations. We are currently in an era to address the long-standing question of our ‘chemical origins’, that is, to understand the journey of organic molecules from pre-stellar cores to planet-forming disks, and finally to the Solar System bodies. Following this journey, which leads to the origin of life on Earth, is a Holy Grail of astronomy. I will review some of the significant results on the formation and detection of complex organic molecules, including prebiotic molecules and their organic precursors, towards star-forming regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altwegg, K., Balsiger, H., Bar-Nun, A., Berthelier, J.J., Bieler, A., Bochsler, P., Briois, C., Calmonte, U., Combi, M.R., Cottin, H., De Keyser, J., Dhooghe, F., Fiethe, B., Fuselier, S.A., Gasc, S., Gombosi, T.I., Hansen, K.C., Haessig, M., Ja ckel, A., Kopp, E., Korth, A., Le Roy, L., Mall, U., Marty, B., Mousis, O., Owen, T., Reme, H., Rubin, M., Semon, T., Tzou, C.Y., Waite, J.H., Wurz, P.: Prebiotic chemicals–amino acid and phosphorus–in the coma of comet 67P/Churyumov-Gerasimenko. Sci. Adv. 2, e1600285–e1600285 (2016). https://doi.org/10.1126/sciadv.1600285

    Article  ADS  Google Scholar 

  2. Bacmann, A., Taquet, V., Faure, A., Kahane, C., Ceccarelli, C.: Detection of complex organic molecules in a prestellar core: a new challenge for astrochemical models. Astron. Astrophys. 541, L12 (2012). https://doi.org/10.1051/0004-6361/201219207

    Article  ADS  Google Scholar 

  3. Bates, D.R.: Theory of molecular formation by radiative association in interstellar clouds. Astrophys. J. 270, 564–577 (1983). https://doi.org/10.1086/161148

    Article  ADS  Google Scholar 

  4. Belloche, A., Garrod, R.T., Müller, H.S.P., Menten, K.M.: Detection of a branched alkyl molecule in the interstellar medium: iso-propyl cyanide. Science 345, 1584–1587 (2014). https://doi.org/10.1126/science.1256678

    Article  ADS  Google Scholar 

  5. Chakrabarti, S., Chakrabarti, S.K.: Can DNA bases be produced during molecular cloud collapse? Astron. Astrophys. 354, L6–L8 (2000)

    ADS  Google Scholar 

  6. Chakrabarti, S.K., Chakrabarti, S.: Adenine abundance in a collapsing molecular cloud. Indian J. Phys. B 74, 97–99 (2000)

    ADS  Google Scholar 

  7. Chakrabarti, S.K., Majumdar, L., Das, A., Chakrabarti, S.: Search for interstellar adenine. Astrophys. Space Sci. 357, 90 (2015). https://doi.org/10.1007/s10509-015-2239-1

    Article  ADS  Google Scholar 

  8. Cuppen, H.M., Herbst, E.: Simulation of the formation and morphology of ice mantles on interstellar grains. Astrophys. J. 668, 294–309 (2007). https://doi.org/10.1086/521014

    Article  ADS  Google Scholar 

  9. Danger, G., Borget, F., Chomat, M., Duvernay, F., Theulé, P., Guillemin, J.C., Le Sergeant D’Hendecourt, L., Chiavassa, T.: Experimental investigation of aminoacetonitrile formation through the Strecker synthesis in astrophysical-like conditions: reactivity of methanimine (CH2NH), ammonia (NH3), and hydrogen cyanide (HCN). Astron. Astrophys. 535, A47 (2011). https://doi.org/10.1051/0004-6361/201117602

    Article  Google Scholar 

  10. Das, A., Chakrabarti, S.K.: Composition and evolution of interstellar grain mantle under the effects of photodissociation. Mon. Not. R. Astron. Soc. 418, 545–555 (2011). https://doi.org/10.1111/j.1365-2966.2011.19503.x

    Article  ADS  Google Scholar 

  11. Das, A., Chakrabarti, S.K., Acharyya, K., Chakrabarti, S.: Time evolution of simple molecules during proto-star collapse. New Astron. 13, 457–467 (2008). https://doi.org/10.1016/j.newast.2008.01.003

    Article  ADS  Google Scholar 

  12. Das, A., Acharyya, K., Chakrabarti, S.K.: Effects of initial condition and cloud density on the composition of the grain mantle. Mon. Not. R. Astron. Soc. 409, 789–800 (2010). https://doi.org/10.1111/j.1365-2966.2010.17343.x

    Article  ADS  Google Scholar 

  13. Das, A., Majumdar, L., Chakrabarti, S.K., Saha, R., Chakrabarti, S.: Formation of cyanoformaldehyde in the interstellar space. Mon. Not. R. Astron. Soc. 433, 3152–3164 (2013). https://doi.org/10.1093/mnras/stt958

    Article  ADS  Google Scholar 

  14. Dickens, J.E., Irvine, W.M., DeVries, C.H., Ohishi, M.: Hydrogenation of interstellar molecules: a survey for Methylenimine (CH2NH). Astrophys. J. 479, 307–312 (1997). https://doi.org/10.1086/303884

    Article  ADS  Google Scholar 

  15. Ehrenfreund, P., Irvine, W., Becker, L., Blank, J., Brucato, J.R., Colangeli, L., Derenne, S., Despois, D., Dutrey, A., Fraaije, H., Lazcano, A., Owen, T., Robert, F., International Space Science Institute ISSI-Team: Astrophysical and astrochemical insights into the origin of life. Rep. Prog. Phys. 65, 1427–1487 (2002). https://doi.org/10.1088/0034-4885/65/10/202

    Article  ADS  Google Scholar 

  16. Gupta, V.P., Tandon, P., Rawat, P., Singh, R.N., Singh, A.: Quantum chemical study of a new reaction pathway for the adenine formation in the interstellar space. Astron. Astrophys. 528, A129 (2011). https://doi.org/10.1051/0004-6361/201015557

    Article  ADS  Google Scholar 

  17. Hasegawa, T.I., Herbst, E., Leung, C.M.: Models of gas-grain chemistry in dense interstellar clouds with complex organic molecules. Astrophys. J. Supp. 82, 167–195 (1992). https://doi.org/10.1086/191713

    Article  ADS  Google Scholar 

  18. Herbst, E., van Dishoeck, E.F.: Complex organic interstellar molecules. Annu. Rev. Astron. Astrophys. 47, 427–480 (2009). https://doi.org/10.1146/annurev-astro-082708-101654

    Article  ADS  Google Scholar 

  19. Hollis, J.M., Jewell, P.R., Lovas, F.J., Remijan, A.: Green bank telescope observations of interstellar glycolaldehyde: low-temperature sugar. Astrophys. J. Lett. 613, L45–L48 (2004). https://doi.org/10.1086/424927

    Article  ADS  Google Scholar 

  20. Hollis, J.M., Jewell, P.R., Lovas, F.J., Remijan, A., Møllendal, H.: Green bank telescope detection of new interstellar aldehydes: propenal and propanal. Astrophys. J. Lett. 610, L21–L24 (2004). https://doi.org/10.1086/423200

    Article  ADS  Google Scholar 

  21. Holtom, P.D., Bennett, C.J., Osamura, Y., Mason, N.J., Kaiser, R.I.: A combined experimental and theoretical study on the formation of the amino acid glycine (NH2CH2COOH) and its isomer (CH3NHCOOH) in extraterrestrial ices. Astrophys. J. 626, 940–952 (2005). https://doi.org/10.1086/430106

    Article  ADS  Google Scholar 

  22. Kim, Y.S., Kaiser, R.I.: On the formation of amines (RNH2) and the cyanide anion (CN) in electron-irradiated ammonia-hydrocarbon interstellar model ices. Astrophys. J. 729, 68 (2011). https://doi.org/10.1088/0004-637X/729/1/68

    Article  ADS  Google Scholar 

  23. Kuan, Y.J., Charnley, S.B., Huang, H.C., Tseng, W.L., Kisiel, Z.: Interstellar glycine. Astrophys. J. 593, 848–867 (2003). https://doi.org/10.1086/375637

    Article  ADS  Google Scholar 

  24. Majumdar, L., Das, A., Chakrabarti, S.K., Chakrabarti, S.: Hydro-chemical study of the evolution of interstellar pre-biotic molecules during the collapse of molecular clouds. Res. Astron. Astrophys. 12, 1613–1624 (2012). https://doi.org/10.1088/1674-4527/12/12/003

    Article  ADS  Google Scholar 

  25. Majumdar, L., Das, A., Chakrabarti, S.K., Chakrabarti, S.: Study of the chemical evolution and spectral signatures of some interstellar precursor molecules of adenine, glycine and alanine. New Astron. 20, 15–23 (2013). https://doi.org/10.1016/j.newast.2012.09.002

    Article  ADS  Google Scholar 

  26. McGuire, B.A., Carroll, P.B., Loomis, R.A., Finneran, I.A., Jewell, P.R., Remijan, A.J., Blake, G.A.: Discovery of the interstellar chiral molecule propylene oxide (CH3CHCH2O). Science 352, 1449–1452 (2016). https://doi.org/10.1126/science.aae0328

    Article  ADS  Google Scholar 

  27. Merz Jr., K.M., Aguiar, E.C., da Silva, J.B.P.: Adenine formation without HCN. J. Phys. Chem. A 118, 3637–3644 (2014). https://doi.org/10.1021/jp5018778

    Article  Google Scholar 

  28. Müller, H.S.P., Schlöder, F., Stutzki, J., Winnewisser, G.: The cologne database for molecular spectroscopy, CDMS: a useful tool for astronomers and spectroscopists. J. Mol. Struct. 742, 215–227 (2005). https://doi.org/10.1016/j.molstruc.2005.01.027

    Google Scholar 

  29. Öberg, K.I., Guzmán, V.V., Furuya, K., Qi, C., Aikawa, Y., Andrews, S.M., Loomis, R., Wilner, D.J.: The comet-like composition of a protoplanetary disk as revealed by complex cyanides. Nature 520, 198–201 (2015). https://doi.org/10.1038/nature14276

    Article  ADS  Google Scholar 

  30. Peltzer, E.T., Bada, J.L., Schlesinger, G., Miller, S.L.: The chemical conditions on the parent body of the murchison meteorite: Some conclusions based on amino, hydroxy and dicarboxylic acids. Adv. Space Res. 4, 69–74 (1984). https://doi.org/10.1016/0273-1177(84)90546-5

    Article  ADS  Google Scholar 

  31. Qin, S.L., Wu, Y., Huang, M., Zhao, G., Li, D., Wang, J.J., Chen, S.: High-resolution submillimeter multiline observations of G19.61 - 0.23: small-scale chemistry. Astrophys. J. 711, 399–416 (2010). https://doi.org/10.1088/0004-637X/711/1/399

    Article  ADS  Google Scholar 

  32. Suzuki, T., Ohishi, M., Hirota, T., Saito, M., Majumdar, L., Wakelam, V.: Survey observations of a possible glycine precursor, methanimine (CH2NH). Astrophys. J. 825, 79 (2016). https://doi.org/10.3847/0004-637X/825/1/79

    Article  ADS  Google Scholar 

  33. Theule, P., Borget, F., Mispelaer, F., Danger, G., Duvernay, F., Guillemin, J.C., Chiavassa, T.: Hydrogenation of solid hydrogen cyanide HCN and methanimine CH2NH at low temperature. Astron. Astrophys. 534, A64 (2011). https://doi.org/10.1051/0004-6361/201117494

    Article  ADS  Google Scholar 

  34. Walsh, C., Loomis, R.A., Öberg, K.I., Kama, M., van ’t Hoff, M.L.R., Millar, T.J., Aikawa, Y., Herbst, E., Widicus Weaver, S.L., Nomura, H.: First detection of gas-phase methanol in a protoplanetary disk. Astrophys. J. Lett. 823, L10 (2016). https://doi.org/10.3847/2041-8205/823/1/L10

    Article  ADS  Google Scholar 

  35. Woodall, J., Agúndez, M., Markwick-Kemper, A.J., Millar, T.J.: The UMIST database for astrochemistry 2006. Astron. Astrophys. 466, 1197–1204 (2007). https://doi.org/10.1051/0004-6361:20064981

    Article  ADS  Google Scholar 

  36. Woon, D.E.: Pathways to glycine and other amino acids in ultraviolet-irradiated astrophysical ices determined via quantum chemical modeling. Astrophys. J. Lett. 571, L177–L180 (2002). https://doi.org/10.1086/341227

    Article  ADS  Google Scholar 

  37. Woon, D.E., Herbst, E.: Quantum chemical predictions of the properties of known and postulated neutral interstellar molecules. Astrophys. J. Supp. 185, 273–288 (2009). https://doi.org/10.1088/0067-0049/185/2/273

    Article  ADS  Google Scholar 

Download references

Acknowledgements

L. Majumdar acknowledges support from the NASA postdoctoral program. A portion of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. L. Majumdar would like to thank Prof. Sandip K. Chakrabarti, Dr. Ankan Das and Dr. Taiki Suzuki for useful discussions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liton Majumdar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Majumdar, L. (2018). The Interstellar Molecular Complexity. In: Mukhopadhyay, B., Sasmal, S. (eds) Exploring the Universe: From Near Space to Extra-Galactic. Astrophysics and Space Science Proceedings, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-319-94607-8_34

Download citation

Publish with us

Policies and ethics