Skip to main content

Relativistic Flows in Astrophysics

  • Conference paper
  • First Online:
Book cover Exploring the Universe: From Near Space to Extra-Galactic

Part of the book series: Astrophysics and Space Science Proceedings ((ASSSP,volume 53))

  • 986 Accesses

Abstract

Most of the matter accreting onto a compact object, or emanating from its vicinity, can be satisfactorily modeled as a fluid. These fluids are different from terrestrial versions. The temperature can range from relativistic values to non-relativistic ones and at high temperature, the fluid is composed of charges and not neutral particles as is the case in the terrestrial version.

We use relativistic equation of state to describe trans-relativistic fluid, around compact objects and at regions far from it. For steady state investigation we took the help of generalized Bernoulli parameter which acts as a constant of motion. We also exploited the fact that the global solution should be of higher entropy and correct boundary conditions. This approach is considered for dissipative accretion flow in curved geometry around black holes, magnetosphere around neutron stars or white dwarfs, and also for magnetically driven outflows. We show that the flow geometry close to a black hole is quite different from a neutron star because of the strong magnetic field around the latter, which has implication on the radiative processes dominant nearby. We also obtained shock solutions for lepton dominated accretion flow around neutron stars, but not around black holes, this is again due to the different flow geometry around the two different types of compact objects. Magnetically driven flows in the special relativistic domain, are able to produce flows which connect both the Alfven and fast sonic points. Numerical simulation of the fluid with relativistic equation of state, shows distinct differences depending on the composition of the flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chandrasekhar, S.: An Introduction to the Study of Stellar Structure. Dover, New York (1938)

    MATH  Google Scholar 

  2. Chattopadhyay, I.: MNRAS 356, 145 (2005)

    Article  ADS  Google Scholar 

  3. Chattopadhyay, I.: In: Chakrabarti, S.K., Majumdar, A.S. (eds.) AIP Conference Series, vol. 1053, pp. 353–356. Proceedings of 2nd Kolkata Conference on Observational Evidence of Back Holes in the Universe and the Satellite Meeting on Black Holes Neutron Stars and Gamma-Ray Bursts. American Institute of Physics, New York (2008)

    Google Scholar 

  4. Chattopadhyay, I.: In: Chattopadhyay, I., Nandi, I., Das, S., Mandal, S. (eds.) Proceedings of Recent Trends in the Study of Compact Objects (RETCO-II): Theory and Observation. Astronomical Society of India Conference Series, vol. 12, pp. 131–132 (2015)

    Google Scholar 

  5. Chattopadhyay, I., Chakrabarti, S.K.: IJMPD 9, 57 (2000)

    ADS  Google Scholar 

  6. Chattopadhyay, I., Chakrabarti, S.K.: IJMPD 9, 717 (2000)

    ADS  Google Scholar 

  7. Chattopadhyay, I., Chakrabarti, S.K.: BASI 30, 313 (2002)

    ADS  Google Scholar 

  8. Chattopadhyay, I., Chakrabarti, S.K.: MNRAS 333, 454 (2002)

    Article  ADS  Google Scholar 

  9. Chattopadhyay, I., Chakrabarti, S.K.: Int. Journ. Mod. Phys. D 20, 1597–1615 (2011)

    Article  ADS  Google Scholar 

  10. Chattopadhyay, I., Das, S.: New A. 12, 454–460 (2007)

    Article  ADS  Google Scholar 

  11. Chattopadhyay, I., Kumar, R.: MNRAS 459, 3792–3811 (2016)

    Article  ADS  Google Scholar 

  12. Chattopadhyay, I., Ryu, D.: ApJ 694, 492 (2009)

    Article  ADS  Google Scholar 

  13. Chattopadhyay, I., Das, S., Chakrabarti, S.K.: MNRAS 348, 486 (2004)

    Article  ADS  Google Scholar 

  14. Chattopadhyay, I., Ryu, D., Jang, H.: In: Khare, P., Ishwara-Chandra, C.H. (eds.) In: Proceedings 31st ASI Meeting, BASI. Astronomical Society of India Conference Series, vol. 9, pp. 13–16 (2013)

    Google Scholar 

  15. Cox J.P., Giuli, R.T.: Principles of Stellar Structure, vol. 2. Gordon and Breach Science Publishers, New York (1968)

    Google Scholar 

  16. Das, S., Chattopadhyay, I.: New A. 13, 549–556 (2008)

    Article  ADS  Google Scholar 

  17. Das, S., Chattopadhyay, I., Nandi, A., Molteni, D.: MNRAS 442, 251–258 (2014)

    Article  ADS  Google Scholar 

  18. Falle, S.A.E.G., Komissarov, S.S.: MNRAS 278, 586–602 (1996)

    Article  ADS  Google Scholar 

  19. Fukue, J.: PASJ 39, 309 (1987)

    ADS  Google Scholar 

  20. Gammie, C.F., Popham, R.: ApJ, 498, 313–326 (1998)

    Article  ADS  Google Scholar 

  21. Kumar, R., Chattopadhyay, I.: MNRAS 430, 386–402 (2013)

    Article  ADS  Google Scholar 

  22. Kumar, R., Chattopadhyay, I.: MNRAS 443, 3444–3462 (2014)

    Article  ADS  Google Scholar 

  23. Kumar, R., Chattopadhyay, I.: MNRAS 469, 4221–4235 (2017)

    Article  ADS  Google Scholar 

  24. Kumar, R., Singh, C.B., Chattopadhyay, I., Chakrabarti, S.K.: MNRAS 436, 2864–2873 (2013)

    Article  ADS  Google Scholar 

  25. Kumar, R., Chattopadhyay, I., Mandal, S.: MNRAS 437, 2992–3003 (2014)

    Article  ADS  Google Scholar 

  26. Lee, S.-J., Chattopadhyay, I., Kumar, R., Hyung, S., Ryu, D.: ApJ 831, 33 (2016)

    Article  ADS  Google Scholar 

  27. Ryu, D., Chattopadhyay, I., Choi, E.: ApJS 166, 410–420 (2006)

    Article  ADS  Google Scholar 

  28. Singh, K., Chattopadhyay, I.: JoAA 39, 10 (2018)

    Google Scholar 

  29. Singh, K., Chattopadhyay, I.: MNRAS, 476, 4123–4138 (2018)

    Article  ADS  Google Scholar 

  30. Spitzer, L.: Physics of Fully Ionized Gas. Wiley, New York (1956)

    MATH  Google Scholar 

  31. Synge, J.L.: Relativisitc Gas. North Holland, Amsterdam (1957)

    Google Scholar 

  32. Taub, A.H.: Phys. Rev. 74, 328 (1948)

    Article  ADS  Google Scholar 

  33. Vlahakis, N., Konigl, A.: ApJ 596, 1080 (2003)

    Article  ADS  Google Scholar 

  34. Vyas, K.M., Chattopadhyay, I.: MNRAS 469, 3270–3285 (2017)

    Article  ADS  Google Scholar 

  35. Vyas, K.M., Chattopadhyay, I.: A&A (2018, in press). https://doi.org/10.1051/0004-6361/201731830

    Article  ADS  Google Scholar 

  36. Vyas, K.M., Kumar, R., Mandal, S., Chattopadhyay, I.: MNRAS 453, 2992–3014 (2015)

    Article  ADS  Google Scholar 

  37. Wald, R.M.: General Relativity. University of Chicago Press, Chicago (1984)

    Book  Google Scholar 

  38. Zensus, J.A., Cohen, M.H., Unwin, S.C.: ApJ 443, 35 (1995)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author acknowledges Mr. Mukesh K. Vyas, Mr. Kuldeep Singh and Ms. Shilpa Sarkar for their help in preparing the plots.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indranil Chattopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chattopadhyay, I. (2018). Relativistic Flows in Astrophysics. In: Mukhopadhyay, B., Sasmal, S. (eds) Exploring the Universe: From Near Space to Extra-Galactic. Astrophysics and Space Science Proceedings, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-319-94607-8_2

Download citation

Publish with us

Policies and ethics