Skip to main content

Formation of Two Component Flows by Numerical Simulations Around Black Holes

  • Conference paper
  • First Online:
Exploring the Universe: From Near Space to Extra-Galactic

Part of the book series: Astrophysics and Space Science Proceedings ((ASSSP,volume 53))

  • 976 Accesses

Abstract

In this article, the results of our numerical simulations of a transonic flow having various viscosity parameters and cooling processes are discussed. In our simulation, for each of the cases, the sub-Keplerian matter is injected at outer boundary. Advection of matter towards a black hole is allowed. As a result, we got a complete solution in which the meridional part behaves like a thin and cool Keplerian disk. However, the other part which is away from the equatorial plane behaves like a transonic flow with standing and oscillating shocks. Finally, we observed that, our solution is consistent with the Chakrabarti-Titarchuk two-component advective flow configuration as the flow approaches to a black hole.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acheson, D.J.: Elementary Fluid Dynamics. Oxford Applied Mathematics and Computing Science Series. Oxford University Press, Oxford (1990)

    MATH  Google Scholar 

  2. Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1967)

    MATH  Google Scholar 

  3. Bell, B.L., Pringle, J.E.: MNRAS 168, 603 (1974)

    Article  ADS  Google Scholar 

  4. Cambier, H.J., Smith, D.M.: ApJ 767, 46 (2013)

    Article  ADS  Google Scholar 

  5. Chakrabarti, S.K.: ApJ 347, 365 (C89) (1989)

    Article  ADS  Google Scholar 

  6. Chakrabarti, S.K.: Theory of Transonic Astrophysical Flows. World Scientific, Singapore (1990)

    Book  Google Scholar 

  7. Chakrabarti, S.K., Titarchuk, L.G.: ApJ 455, 623 (CT95) (1995)

    Article  ADS  Google Scholar 

  8. Das S., Chattopadhyay I., Nandi A., Molteni D.: MNRAS 442, 251 (2014)

    Article  ADS  Google Scholar 

  9. Dutta, B.G., Chakrabarti, S.K.: MNRAS 404, 2136 (2010)

    ADS  Google Scholar 

  10. Giri, K., Chakrabarti, S.K.: MNRAS 421, 666 (2012)

    ADS  Google Scholar 

  11. Giri, K., Chakrabarti, S.K.: MNRAS 430, 2836 (2013)

    Article  ADS  Google Scholar 

  12. Giri, K., Chakrabarti, S. K., Samanta, M., Ryu, D.: MNRAS 403, 516 (2010)

    Article  ADS  Google Scholar 

  13. Giri, K., Garain, S., Chakrabarti, S.K.: MNRAS 448, 3221 (2015)

    Article  ADS  Google Scholar 

  14. Harten, A.: J. Comp. Phys. 49, 357 (1983)

    Article  ADS  Google Scholar 

  15. Igumenshchev, I.V., Abramowicz, M.A., Narayan, R.: ApJ 537, 27 (2000)

    Article  ADS  Google Scholar 

  16. Kumar R., Chattopadhyay, I.: MNRAS 430, 386 (2013)

    Article  ADS  Google Scholar 

  17. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics. Pergamon Press, Oxford (1959)

    Google Scholar 

  18. Lanzafame, G., Molteni, D., Chakrabarti, S.K.: MNRAS 299, 799 (1998)

    Article  ADS  Google Scholar 

  19. McKinney, J.C., Narayan, R.: MNRAS 375, 513 (2007)

    Article  ADS  Google Scholar 

  20. Miller, J.M., Wijnands, R., Homan, J., Belloni, T., Pooley, D., Corbel, S., Kouveliotou, C., van der Klis, M., Lewin, W.H.G.: ApJ 563, 928 (2001)

    Article  ADS  Google Scholar 

  21. Paczyński, B., Wiita, P.J.: A & A 88, 23 (1980)

    ADS  Google Scholar 

  22. Pringle, J.E.: A R A & A 19, 137 (1981)

    ADS  Google Scholar 

  23. Robertson, J.A., Frank, J.: MNRAS 221, 279 (1986)

    Article  ADS  Google Scholar 

  24. Shakura, N.I., Sunyaev, R.A.: A & A 24, 337 (SS73) (1973)

    Google Scholar 

  25. Smith, D.M., Heindl, W. A., Markwardt, C., Swank, J.H.: ApJ 554, L41 (2001)

    Article  ADS  Google Scholar 

  26. Smith, D.M., Heindl, W.A., Swank, J.H.: AAS 33, 1473 (2001)

    ADS  Google Scholar 

  27. Soria, R., Risaliti, G., Elvis, M., Fabbiano, G., Bianchi, S., Kuncic, Z.: ApJ 695, 1614 (2009)

    Article  ADS  Google Scholar 

  28. Soria, R., Broderick, J. W., Hao, J., Hannikainen, D.C., Mehdipour, M., Pottschmidt, K., Zhang, S.N.: MNRAS 415, 410 (2011)

    Article  ADS  Google Scholar 

  29. Yuan, F., Maochun, W., Bu, D.: ApJ 761, 129 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

KG acknowledges Prof. Sandip K. Chakrabarti for introducing him to the fascinating subject of Black Hole Astrophysics and S. N. Bose National Center for Basic Science (SNBNCBS) for financial support during the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinsuk Giri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Giri, K. (2018). Formation of Two Component Flows by Numerical Simulations Around Black Holes. In: Mukhopadhyay, B., Sasmal, S. (eds) Exploring the Universe: From Near Space to Extra-Galactic. Astrophysics and Space Science Proceedings, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-319-94607-8_11

Download citation

Publish with us

Policies and ethics