Skip to main content

Phenomenological Implications of Low Scale Seesaw Neutrinos on LFV

  • Chapter
  • First Online:
  • 159 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this Chapter we revisit some of the most relevant phenomenological implications of right-handed neutrinos with TeV scale masses, paying special attention to their lepton flavor violating consequences. After reviewing the experimental status of charged LFV searches, we discuss in detail the LFV radiative and three-body lepton decays in presence of right-handed neutrinos at the TeV scale.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We thank J. Fuster for private communication with the updated ILC perspectives.

  2. 2.

    We will show our results for the case of a Normal Hierarchy, although similar results have been obtained for an Inverted Hierarchy.

  3. 3.

    In the following derivation of the \(\mu \)-e suppressed scenarios, we will assume the situation of having real matrices in order to avoid potential constraints from lepton electric dipole moments.

  4. 4.

    We actually set \(c_{\tau \mu }=0.99\) for this plot, since the \(\mu _X\) parametrization in Eq. (2.46) requests a non-singular \(Y_\nu \). Nevertheless, the results for cLFV processes are basically the same as setting \(c_{\tau \mu }=1\).

  5. 5.

    We do not consider other lepton universality tests in view of the fact that they give similar bounds, as in the case of \(\Delta r_\pi \), or they are less constraining, like the ones involving \(\tau \) leptons [53].

References

  1. E. Arganda, M.J. Herrero, X. Marcano, C. Weiland, Phys. Rev. D 91, 015001 (2015). https://doi.org/10.1103/PhysRevD.91.015001, arXiv:1405.4300 [hep-ph]

  2. V. De Romeri, M.J. Herrero, X. Marcano, F. Scarcella, Phys. Rev. D 95, 075028 (2017). https://doi.org/10.1103/PhysRevD.95.075028, arXiv:1607.05257 [hep-ph]

  3. S. Bravar, O.B.O.T.T.M. Collaboration, Proceedings of the 38th International Conference on High Energy Physics (ICHEP 2016), Chicago, IL, USA, August 3–10, 2016. PoS ICHEP2016, 552 (2016)

    Google Scholar 

  4. E.P. Hincks, B. Pontecorvo, J. Phys. Rev. 73, 257 (1948). https://doi.org/10.1103/PhysRev.73.257

  5. A.M. Baldini et al. (MEG), Eur. Phys. J. C 76, 434 (2016). https://doi.org/10.1140/epjc/s10052-016-4271-x, arXiv:1605.05081 [hep-ex]

  6. Y. Kuno, Y. Okada, Rev. Mod. Phys. 73, 151 (2001). https://doi.org/10.1103/RevModPhys.73.151, arXiv:hep-ph/9909265 [hep-ph]

  7. R.H. Bernstein, P.S. Cooper, J. Phys. Rept. 532, 27 (2013). https://doi.org/10.1016/j.physrep.2013.07.002, arXiv:1307.5787 [hep-ex]

  8. A.M. Baldini et al. (2013), arXiv:1301.7225 [physics.ins-det]

  9. U. Bellgardt et al. (SINDRUM), Nucl. Phys. B 299, 1 (1988). https://doi.org/10.1016/0550-3213(88)90462-2

  10. A. Blondel et al. (2013), arXiv:1301.6113 [physics.ins-det]

  11. B. Aubert et al. (BaBar), Phys. Rev. Lett. 104, 021802 ( 2010). https://doi.org/10.1103/PhysRevLett.104.021802, arXiv:0908.2381 [hep-ex]

  12. T. Aushev et al. ( 2010), arXiv:1002.5012 [hep-ex]

  13. K. Hayasaka et al., Phys. Lett. B 687, 139 ( 2010). https://doi.org/10.1016/j.physletb.2010.03.037, arXiv:1001.3221 [hep-ex]

  14. K. Hayasaka, 22nd Rencontres de Blois on Particle Physics and Cosmology Blois, Loire Valley, France, July 15–20, 2010 (2010), http://inspirehep.net/record/873396/files/arXiv:1010.3746.pdf, arXiv:1010.3746 [hep-ex]

  15. C. Dohmen et al. (SINDRUM II), Phys. Lett. B 317, 631 (1993). https://doi.org/10.1016/0370-2693(93)91383-X

  16. A. Alekou et al., Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013), Minneapolis, MN, USA, July 29–August 6, 2013 (2013), http://inspirehep.net/record/1256506/files/arXiv:1310.0804.pdf, arXiv:1310.0804 [physics.acc-ph]

  17. W.H. Bertl et al. (SINDRUM II), Eur. Phys. J. C 47, 337 (2006). https://doi.org/10.1140/epjc/s2006-02582-x

  18. Y. Kuno (COMET), PTEP 2013, 022C01 (2013). https://doi.org/10.1093/ptep/pts089

  19. R.M. Carey et al. (Mu2e), Proposal to Search for \(\mu ^- N \rightarrow e^- N\) with a Single Event Sensitivity Below \(10^{-16}\). Technical Report (2008)

    Google Scholar 

  20. D.F. Measday, J. Phys. Rept. 354, 243 (2001). https://doi.org/10.1016/S0370-1573(01)00012-6

  21. Y. Amhis et al. (2016), arXiv:1612.07233 [hep-ex]

  22. R. Aaij et al. (LHCb), JHEP 02, 121 (2015). https://doi.org/10.1007/JHEP02(2015)121, arXiv:1409.8548 [hep-ex]

  23. E. Abouzaid et al. (collaboration KTeV), Phys. Rev. Lett. 100, 131803 (2008). https://doi.org/10.1103/PhysRevLett.100.131803, arXiv:0711.3472 [hep-ex]

  24. D. Ambrose et al. (BNL), Phys. Rev. Lett. 81, 5734 ( 1998). https://doi.org/10.1103/PhysRevLett.81.5734, arXiv:hep-ex/9811038 [hep-ex]

  25. A. Sher et al., Phys. Rev. D 72, 012005 (2005). https://doi.org/10.1103/PhysRevD.72.012005, arXiv:hep-ex/0502020 [hep-ex]

  26. R. Appel et al., Phys. Rev. Lett. 85, 2877 (2000). https://doi.org/10.1103/PhysRevLett.85.2877, arXiv:hep-ex/0006003 [hep-ex]

  27. J.R. Batley et al. (NA48/2), Phys. Lett. B 697, 107 (2011). https://doi.org/10.1016/j.physletb.2011.01.042, arXiv:1011.4817 [hep-ex]

  28. R. Aaij et al. (LHCb), Phys. Rev. Lett. 108, 101601 (2012). https://doi.org/10.1103/PhysRevLett.108.101601, arXiv:1110.0730 [hep-ex]

  29. R. Akers et al. (OPAL), Z. Phys. C 67, 555 (1995). https://doi.org/10.1007/BF01553981

  30. P. Abreu et al. (collaboration DELPHI), Phys. C 73, 243 (1997). https://doi.org/10.1007/s002880050313

  31. G. Aad et al. (ATLAS), Phys. Rev. D 90, 072010 (2014). https://doi.org/10.1103/PhysRevD.90.072010, arXiv:1408.5774 [hep-ex]

  32. A. Abada, V. De Romeri, S. Monteil, J. Orloff, A.M. Teixeira, JHEP 04, 051 (2015). https://doi.org/10.1007/JHEP04(2015)051, arXiv:1412.6322 [hep-ph]

  33. G. Wilson, Neutrino oscillations: are lepton-flavor violating Z decays observable with the CDR detector? in DESY-ECFA LC Workshops held at Frascati (1998)

    Google Scholar 

  34. G. Wilson, Update on experimental aspects of lepton-flavour violation, in DESY-ECFA LC Workshops held at Oxford (1999)

    Google Scholar 

  35. A. Blondel, E. Graverini, N. Serra, M. Shaposhnikov ( FCC-ee study Team), Proceedings of the 37th International Conference on High Energy Physics (ICHEP 2014), Valencia, Spain, July 2–9, 2014, vol. 273–275 (2016), pp. 1883–1890, arXiv:1411.5230 [hep-ex]

  36. G. Aad et al. (collaboration ATLAS), Eur. Phys. J. C 77, 70 ( 2017). https://doi.org/10.1140/epjc/s10052-017-4624-0, arXiv:1604.07730 [hep-ex]

  37. V. Khachatryan et al. (CMS), Phys. Lett. B 763, 472 (2016). https://doi.org/10.1016/j.physletb.2016.09.062, arXiv:1607.03561 [hep-ex]

  38. CMS Collaboration, Search for lepton flavour violating decays of the Higgs boson to \(\mu \tau \) and e\(\tau \) in proton-proton collisions at \(\sqrt{s}=13\) TeV (2017), CMS-PAS-HIG-17-001

    Google Scholar 

  39. V. Khachatryan et al. (CMS), Phys. Lett. B 749, 337 (2015). https://doi.org/10.1016/j.physletb.2015.07.053, arXiv:1502.07400 [hep-ex]

  40. R. Harnik, J. Kopp, J. Zupan, JHEP 03, 026 (2013). https://doi.org/10.1007/JHEP03(2013)026, arXiv:1209.1397 [hep-ph]

  41. G. Blankenburg, J. Ellis, G. Isidori, Phys. Lett. B 712, 386 (2012). https://doi.org/10.1016/j.physletb.2012.05.007, arXiv:1202.5704 [hep-ph]

  42. S. Davidson, P. Verdier, J. Phys. Rev. D 86, 111701 (2012). https://doi.org/10.1103/PhysRevD.86.111701, arXiv:1211.1248 [hep-ph]

  43. S. Bressler, A. Dery, A. Efrati, Phys. Rev. D 90, 015025 (2014). https://doi.org/10.1103/PhysRevD.90.015025, arXiv:1405.4545 [hep-ph]

  44. The ATLAS collaboration, Projections for measurements of Higgs boson cross sections, branching ratios and coupling parameters with the ATLAS detector at a HL-LHC. Technical Report ATL-PHYS-PUB-2013-014 (institution CERN, 2013)

    Google Scholar 

  45. The CMS Collaboration (CMS), J. Proc. Commun. Summer Study 2013: Snowmass on the Mississippi (CSS2013) (2013), http://inspirehep.net/record/1244669/files/arXiv:1307.7135.pdf, arXiv:1307.7135 [hep-ex]

  46. A. De Roeck, Higgs Physics at the LHC, experimental review (2014), note talk at Physics Challenges in the face of LHC-14, IFT, Madrid, http://workshops.ift.uam-csic.es/files/157/DeRoeck.pdf

  47. H. Baer, T. Barklow, K. Fujii, Y. Gao, A. Hoang, S. Kanemura, J. List, H.E. Logan, A. Nomerotski, M. Perelstein et al. (2013), arXiv:1306.6352 [hep-ph]

  48. M. Bicer et al. (TLEP Design Study Working Group), Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013), Minneapolis, MN, USA, July 29–August 6, 2013. JHEP 01, 164 (2014). https://doi.org/10.1007/JHEP01(2014)164, arXiv:1308.6176 [hep-ex]

  49. A. Ilakovac, A. Pilaftsis, J. Nucl. Phys. B 437, 491 (1995). https://doi.org/10.1016/0550-3213(94)00567-X, arXiv:hep-ph/9403398 [hep-ph]

  50. R. Alonso, M. Dhen, M.B. Gavela, T. Hambye, JHEP 01, 118 (2013). https://doi.org/10.1007/JHEP01(2013)118, arXiv:1209.2679 [hep-ph]

  51. T. Appelquist, J. Carazzone, J. Phys. Rev. D 11, 2856 (1975). https://doi.org/10.1103/PhysRevD.11.2856

  52. A. Abada, D. Das, A.M. Teixeira, A. Vicente, C. Weiland, JHEP 02, 048 (2013). https://doi.org/10.1007/JHEP02(2013)048, arXiv:1211.3052 [hep-ph]

  53. A. Abada, A.M. Teixeira, A. Vicente, C. Weiland, JHEP 02, 091 (2014a). https://doi.org/10.1007/JHEP02(2014)091, arXiv:1311.2830 [hep-ph]

  54. V. Cirigliano, I. Rosell, J. Phys. Rev. Lett. 99, 231801 (2007). https://doi.org/10.1103/PhysRevLett.99.231801, arXiv:0707.3439 [hep-ph]

  55. M. Finkemeier, 2nd Workshop on Physics and Detectors for DAPHNE (DAPHNE 95), Frascati, Italy, April 4–7 (1995). Phys. Lett. B 387, 391 (1996). https://doi.org/10.1016/0370-2693(96)01030-1, arXiv:hep-ph/9505434 [hep-ph]

  56. E. Goudzovski (NA48/2, NA62), Proceedings, 21st International Europhysics Conference on High energy physics (EPS-HEP 2011), Grenoble, France, July 21–27, 2011. PoS EPS-HEP2011, 181 (2011), arXiv:1111.2818 [hep-ex]

  57. C. Lazzeroni et al. (NA62), Phys. Lett. B 719, 326 (2013). https://doi.org/10.1016/j.physletb.2013.01.037, arXiv:1212.4012 [hep-ex]

  58. K.A. Olive et al. (collaboration Particle Data Group), Chin. Phys. C 38, 090001 (2014). https://doi.org/10.1088/1674-1137/38/9/090001

  59. E. Fernandez-Martinez, J. Hernandez-Garcia, J. Lopez-Pavon, M. Lucente, JHEP 10, 130 (2015). https://doi.org/10.1007/JHEP10(2015)130, arXiv:1508.03051 [hep-ph]

  60. P. Benes, A. Faessler, F. Simkovic, S. Kovalenko, Phys. Rev. D 71, 077901 (2005). https://doi.org/10.1103/PhysRevD.71.077901, arXiv:hep-ph/0501295 [hep-ph]

  61. A. Abada, V. De Romeri, A.M. Teixeira, JHEP 09, 074 (2014b). https://doi.org/10.1007/JHEP09(2014)074, arXiv:1406.6978 [hep-ph]

  62. M. Blennow, E. Fernandez-Martinez, J. Lopez-Pavon, J. Menendez, JHEP 07, 096 (2010). https://doi.org/10.1007/JHEP07(2010)096, arXiv:1005.3240 [hep-ph]

  63. A. Abada, M. Lucente, J. Nucl. Phys. B 885, 651 (2014). https://doi.org/10.1016/j.nuclphysb.2014.06.003, arXiv:1401.1507 [hep-ph]

  64. M. Agostini et al. ( collaboration GERDA), Phys. Rev. Lett. 111, 122503 (2013). https://doi.org/10.1103/PhysRevLett.111.122503, arXiv:1307.4720 [nucl-ex]

  65. M. Auger et al. (collaboration EXO-200), Phys. Rev. Lett. 109, 032505 (2012). https://doi.org/10.1103/PhysRevLett.109.032505, arXiv:1205.5608 [hep-ex]

  66. J.B. Albert et al. (collaboration EXO-200), Nature 510, 229 (2014). https://doi.org/10.1038/nature13432, arXiv:1402.6956 [nucl-ex]

  67. A. Gando et al. (collaboration KamLAND-Zen), Phys. Rev. Lett. 110, 062502 (2013). https://doi.org/10.1103/PhysRevLett.110.062502, arXiv:1211.3863 [hep-ex]

  68. M.E. Peskin, T. Takeuchi, Phys. Rev. D 46, 381 (1992). https://doi.org/10.1103/PhysRevD.46.381

  69. E. Akhmedov, A. Kartavtsev, M. Lindner, L. Michaels, J. Smirnov, JHEP 05, 081 (2013). https://doi.org/10.1007/JHEP05(2013)081, arXiv:1302.1872 [hep-ph]

  70. A. Atre, T. Han, S. Pascoli, B. Zhang, JHEP 05, 030 (2009). https://doi.org/10.1088/1126-6708/2009/05/030, arXiv:0901.3589 [hep-ph]

  71. I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler, T. Schwetz, JHEP 01, 087 (2017). https://doi.org/10.1007/JHEP01(2017)087, arXiv:1611.01514 [hep-ph]

  72. D.V. Forero, M. Tortola, J.W.F. Valle, Phys. Rev. D 86, 073012 (2012). https://doi.org/10.1103/PhysRevD.86.073012, arXiv:1205.4018 [hep-ph]

  73. G.L. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo, A.M. Rotunno, Phys. Rev. D 86, 013012 (2012). https://doi.org/10.1103/PhysRevD.86.013012, arXiv:1205.5254 [hep-ph]

  74. D.V. Forero, M. Tortola, J.W.F. Valle, Phys. Rev. D 90, 093006 (2014). https://doi.org/10.1103/PhysRevD.90.093006, arXiv:1405.7540 [hep-ph]

  75. M. Drewes et al., JCAP 1701, 025 (2017). https://doi.org/10.1088/1475-7516/2017/01/025, arXiv:1602.04816 [hep-ph]

  76. J. Baglio, C. Weiland, JHEP 04, 038 (2017). https://doi.org/10.1007/JHEP04(2017)038, arXiv:1612.06403 [hep-ph]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xabier Marcano .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marcano, X. (2018). Phenomenological Implications of Low Scale Seesaw Neutrinos on LFV. In: Lepton Flavor Violation from Low Scale Seesaw Neutrinos with Masses Reachable at the LHC. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-94604-7_3

Download citation

Publish with us

Policies and ethics