Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 159 Accesses

Abstract

In this Chapter we motivate the need of going beyond the Standard Model for explaining lepton flavor changing neutrino oscillation data and review some of the most popular models for this task, the seesaw models. We will concentrate specially in the so-called low scale seesaw models, one of which will be of special relevance for this Thesis: the inverse seesaw model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Assuming the simplest scenario where only three physical neutrinos exist.

  2. 2.

    The choice of a scalar singlet is not possible due to the structure of the Weinberg operator.

  3. 3.

    Although the addition of two neutrinos is enough for explaining neutrino oscillation data, we prefer to add one RH per generation.

  4. 4.

    Although the minimal realization of the ISS model that accounts for oscillation data only needs two fermionic pairs [58], usually referred to as the (2,2)-ISS, we prefer to add one pair for each SM family, usually denoted by (3,3)-ISS.

  5. 5.

    Nevertheless, this idea could be generically applied to any model with a new scale responsible of explaining the smallness of neutrino masses.

References

  1. E. Arganda, M.J. Herrero, X. Marcano, C. Weiland, Phys. Rev. D91, 015001 (2015). https://doi.org/10.1103/PhysRevD.91.015001, arxiv:1405.4300 [hep-ph]

  2. E. Arganda, M.J. Herrero, X. Marcano, C. Weiland, Phys. Rev. D 91, 055010 (2016). arXiv:1508.04623 [hep-ph]

    Article  ADS  Google Scholar 

  3. B. Pontecorvo, Sov. Phys. JETP 6, 429 (1957), [Zh. Eksp. Teor. Fiz. 33, 549 (1957)]

    Google Scholar 

  4. Z. Maki, M. Nakagawa, S. Sakata, Prog. Theor. Phys. 28, 870 (1962). https://doi.org/10.1143/PTP.28.870

    Article  ADS  Google Scholar 

  5. C. Giunti, W.C. Kim, Fundamentals of Neutrino Physics and Astrophysics (Oxford University Press, 2007)

    Chapter  Google Scholar 

  6. C. Patrignani et al. (Particle Data Group), Chin. Phys. C40, 100001 (2016). https://doi.org/10.1088/1674-1137/40/10/100001

  7. C. Kraus et al., Eur. Phys. J. C 40, 447 (2005). arXiv:hep-ex/0412056 [hep-ex]

    Article  ADS  Google Scholar 

  8. V.N. Aseev et al. (Troitsk), Phys. Rev. D84, 112003 (2011). https://doi.org/10.1103/PhysRevD.84.112003, arXiv:1108.5034 [hep-ex]

  9. P.A.R. Ade et al. (Planck), Astron. Astrophys. 571, A16 (2014). https://doi.org/10.1051/0004-6361/201321591, arXiv:1303.5076 [astro-ph.CO]

  10. L. Wolfenstein, Phys. Rev. D17, 2369 (1978). https://doi.org/10.1103/PhysRevD.17.2369

  11. L. Wolfenstein, Phys. Rev. D20, 2634 (1979). https://doi.org/10.1103/PhysRevD.20.2634

  12. S.P. Mikheev, A.Yu. Smirnov, Sov. J. Nucl. Phys. 42, 913 (1985), [Yad. Fiz. 42, 1441 (1985)]

    Google Scholar 

  13. S.P. Mikheev, A.Yu. Smirnov, Nuovo Cim. C9, 17 (1986). https://doi.org/10.1007/BF02508049

  14. S.P. Mikheev, A.Yu. Smirnov, Sov. Phys. JETP 64, 4 (1986), [Zh. Eksp. Teor. Fiz. 91, 7 (1986)], arXiv:0706.0454 [hep-ph]

  15. J.D. Vergados, H. Ejiri, F. Simkovic, Rept. Prog. Phys. 75, 106301 (2012). arXiv:1205.0649 [hep-ph]

    Article  ADS  Google Scholar 

  16. S. Dell’Oro, S. Marcocci, M. Viel, F. Vissani, Adv. High Energy Phys. 2016, 2162659 (2016). arXiv:1601.07512 [hep-ph]

    Article  Google Scholar 

  17. C. Jarlskog, Z. Phys. C29, 491 (1985). https://doi.org/10.1007/BF01565198

  18. S. Davidson, E. Nardi, Y. Nir, Phys. Rept. 466, 105 (2008). arXiv:0802.2962 [hep-ph]

    Article  ADS  Google Scholar 

  19. M.A. Acero, C. Giunti, M. Laveder, Phys. Rev. D 78, 073009 (2008). arXiv:0711.4222 [hep-ph]

    Article  ADS  Google Scholar 

  20. C. Giunti, M. Laveder, Phys. Rev. C 83, 065504 (2011). arXiv:1006.3244 [hep-ph]

    Article  ADS  Google Scholar 

  21. T.A. Mueller et al., Phys. Rev. C 83, 054615 (2011). arXiv:1101.2663 [hep-ex]

    Article  ADS  Google Scholar 

  22. P. Huber, Phys. Rev. C84, 024617 (2011), [Erratum: Phys. Rev.C85, 029901(2012)]. https://doi.org/10.1103/PhysRevC.85.029901, https://doi.org/10.1103/PhysRevC.84.024617, arXiv:1106.0687 [hep-ph]

  23. G. Mention, M. Fechner, T. Lasserre, T.A. Mueller, D. Lhuillier, M. Cribier, A. Letourneau, Phys. Rev. D 83, 073006 (2011). arXiv:1101.2755 [hep-ex]

    Article  ADS  Google Scholar 

  24. A. Aguilar-Arevalo et al. (LSND), Phys. Rev. D64, 112007 (2001). https://doi.org/10.1103/PhysRevD.64.112007, arXiv:hepex/0104049 [hep-ex]

  25. A.A. Aguilar-Arevalo et al. (MiniBooNE), Phys. Rev. Lett. 98, 231801 (2007). https://doi.org/10.1103/PhysRevLett.98.231801, arXiv:0704.1500 [hep-ex]

  26. A.A. Aguilar-Arevalo et al. (MiniBooNE), Phys. Rev. Lett. 105, 181801 (2010). https://doi.org/10.1103/PhysRevLett.105.181801, arXiv:1007.1150 [hep-ex]

  27. A.A. Aguilar-Arevalo et al. (MiniBooNE), Phys. Rev. Lett. 110, 161801 (2013). https://doi.org/10.1103/PhysRevLett.110.161801, arXiv:1303.2588 [hep-ex]

  28. I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler, T. Schwetz, JHEP 01, 087 (2017). arXiv:1611.01514 [hep-ph]

    Article  ADS  Google Scholar 

  29. E. Akhmedov (2014), arXiv:1412.3320 [hep-ph]

  30. S. Weinberg, Phys. Rev. Lett. 43, 1566 (1979). https://doi.org/10.1103/PhysRevLett.43.1566

    Article  ADS  Google Scholar 

  31. A. Abada, C. Biggio, F. Bonnet, M.B. Gavela, T. Hambye, JHEP 12, 061 (2007). arXiv:0707.4058 [hep-ph]

    Article  ADS  Google Scholar 

  32. P. Minkowski, Phys. Lett. B67, 421 (1977). https://doi.org/10.1016/0370-2693(77)90435-X

  33. M. Gell-Mann, P. Ramond, R. Slansky, Supergravity Workshop Stony Brook, New York, September 27-28, 1979, Conf. Proc. C790927, 315 (1979), arXiv:1306.4669 [hepth]

  34. T. Yanagida, Proceedings: Workshop on the Unified Theories and the Baryon Number in the Universe: Tsukuba, Japan, February 13–14, 1979. Conf. Proc. C7902131, 95 (1979)

    Google Scholar 

  35. R.N. Mohapatra, G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980). https://doi.org/10.1103/PhysRevLett.44.912

    Article  ADS  Google Scholar 

  36. J. Schechter, J.W.F. Valle, Phys. Rev. D22, 2227 (1980). https://doi.org/10.1103/PhysRevD.22.2227

  37. J.A. Casas, A. Ibarra, Nucl. Phys. B 618, 171 (2001). arXiv:hep-ph/0103065 [hepph]

    Article  ADS  Google Scholar 

  38. M. Magg, C. Wetterich, Phys. Lett. B94, 61 (1980). https://doi.org/10.1016/0370-2693(80)90825-4

  39. C. Wetterich, Nucl. Phys. B187, 343 (1981). https://doi.org/10.1016/0550-3213(81)90279-0

  40. G. Lazarides, Q. Sha, C. Wetterich, Nucl. Phys. B181, 287 (1981). https://doi.org/10.1016/0550-3213(81)90354-0

  41. R.N. Mohapatra, G. Senjanovic, Phys. Rev. D23, 165 (1981). https://doi.org/10.1103/PhysRevD.23.165

  42. A. Arhrib, R. Benbrik, M. Chabab, G. Moultaka, M.C. Peyranere, L. Rahili, J. Ramadan, Phys. Rev. D 84, 095005 (2011). arXiv:1105.1925 [hep-ph]

    Article  ADS  Google Scholar 

  43. G. ’t Hooft, Recent Developments in Gauge Theories. Proceedings, Nato Advanced Study Institute, Cargese, France, August 26–September 8, 1979, NATO Sci. Ser. B 59, 135 (1980). https://doi.org/10.1007/978-1-4684-7571-5_9

  44. R. Foot, H. Lew, X.G. He, G.C. Joshi, Z. Phys. C44, 441 (1989). https://doi.org/10.1007/BF01415558

  45. Y. Cai, J. Herrero-García, M. A. Schmidt, A. Vicente, R. R. Volkas, (2017), arXiv:1706.08524 [hep-ph]

  46. A. Zee, Nucl. Phys. B 264, 99 (1986)

    Article  ADS  Google Scholar 

  47. K.S. Babu, Phys. Lett. B203, 132 (1988). https://doi.org/10.1016/0370-2693(88)91584-5

  48. C.S. Aulakh, R.N. Mohapatra, Phys. Lett. B119, 136 (1982). https://doi.org/10.1016/0370-2693(82)90262-3

  49. L.J. Hall, M. Suzuki, Nucl. Phys. B231, 419 (1984). https://doi.org/10.1016/0550-3213(84)90513-3

  50. R. Barbier et al., Phys. Rept. 420, 1 (2005). arXiv:hep-ph/0406039 [hep-ph]

    Article  ADS  Google Scholar 

  51. R.N. Mohapatra et al., Rept. Prog. Phys. 70, 1757 (2007). arXiv:hep-ph/0510213 [hepph]

    Article  ADS  Google Scholar 

  52. E. Ma, Proceedings, 15th Hellenic School and Workshops on Elementary Particle Physics and Gravity (CORFU2015): Corfu, Greece, September 1–25, 2015, PoS CORFU2015, 009 (2016)

    Google Scholar 

  53. R.N. Mohapatra, Phys. Rev. Lett. 56, 561 (1986). https://doi.org/10.1103/PhysRevLett.56.561

    Article  ADS  Google Scholar 

  54. R.N. Mohapatra, J.W.F. Valle, Proceedings, 23RD International Conference on High Energy Physics, JULY 16-23, 1986, Berkeley, CA, Phys. Rev. D34, 1642 (1986). https://doi.org/10.1103/PhysRevD.34.1642

  55. J. Bernabeu, A. Santamaria, J. Vidal, A. Mendez, J. W. F. Valle, Phys. Lett. B187, 303 (1987). https://doi.org/10.1016/0370-2693(87)91100-2

  56. E.K. Akhmedov, M. Lindner, E. Schnapka, J.W.F. Valle, Phys. Lett. B 368, 270 (1996). arXiv:hep-ph/9507275 [hep-ph]

    Article  ADS  Google Scholar 

  57. E.K. Akhmedov, M. Lindner, E. Schnapka, J.W.F. Valle, Phys. Rev. D 53, 2752 (1996). arXiv:hep-ph/9509255 [hep-ph]

    Article  ADS  Google Scholar 

  58. A. Abada, M. Lucente, Nucl. Phys. B 885, 651 (2014). arXiv:1401.1507 [hep-ph]

    Article  ADS  Google Scholar 

  59. M.C. Gonzalez-Garcia, J.W.F. Valle, Phys. Lett. B216, 360(1989). https://doi.org/10.1016/0370-2693(89)91131-3

  60. A. Ilakovac, A. Pilaftsis, Nucl. Phys. B 437, 491 (1995). arXiv:hep-ph/9403398 [hepph]

    Article  ADS  Google Scholar 

  61. E. Ma, Mod. Phys. Lett. A 24, 2161 (2009). arXiv:0904.1580 [hep-ph]

    Article  ADS  Google Scholar 

  62. G. Aad et al. (ATLAS, CMS), Proceedings, Meeting of the APS Division of Particles and Fields (DPF 2015): Ann Arbor, Michigan, USA, 4-8 Aug 2015, Phys. Rev. Lett. 114, 191803 (2015). https://doi.org/10.1103/PhysRevLett.114.191803, arXiv:1503.07589 [hep-ex]

  63. Yu. A. Golfand, E. P. Likhtman, JETP Lett. 13, 323 (1971), [Pisma Zh. Eksp. Teor. Fiz. 13, 452 (1971)]

    Google Scholar 

  64. D.V. Volkov, V.P. Akulov, Phys. Lett. 46B, 109 (1973). https://doi.org/10.1016/0370-2693(73)90490-5

  65. J. Wess, B. Zumino, Nucl. Phys. B70, 39 (1974). https://doi.org/10.1016/0550-3213(74)90355-1

  66. H.E. Haber, G.L. Kane, Phys. Rept. 117, 75 (1985). https://doi.org/10.1016/0370-1573(85)90051-1

  67. J.F. Gunion, H.E. Haber, Nucl. Phys. B272, 1 (1986), [Erratum: Nucl. Phys. B402 ,567(1993)]. https://doi.org/10.1016/0550-3213(86)90340-8, https://doi.org/10.1016/0550-3213(93)90653-7

  68. J.F. Gunion, H.E. Haber, Proceedings, 23RD International Conference on High Energy Physics, JULY 16-23, 1986, Berkeley, CA, Nucl. Phys. B278, 449 (1986), [Erratum: Nucl. Phys. B 402, 569 (1993)]. https://doi.org/10.1016/0550-3213(93)90654-8, https://doi.org/10.1016/0550-3213(86)90050-7

  69. H.E. Haber, in Theoretical Advanced Study Institute (TASI 92): From Black Holes and Strings to Particles Boulder, Colorado, June 3-28, 1992 (1993) pp. 0589–688, arXiv:hepph/93062079306207 [hep-ph]

  70. S.P. Martin, Adv. Ser. Direct. High Energy Phys 21, 1 (2010), [Adv. Ser. Direct. High Energy Phys. 18, 1(1998)]. https://doi.org/10.1142/9789814307505_0001, arXiv:hep-ph/9709356 [hep-ph]

  71. L. Girardello, M.T. Grisaru, Nucl. Phys. B194, 65 (1982). https://doi.org/10.1016/0550-3213(82)90512-0

  72. J. Hisano, T. Moroi, K. Tobe, M. Yamaguchi, Phys. Rev. D 53, 2442 (1996). arXiv:hep-ph/9510309 [hep-ph]

    Article  ADS  Google Scholar 

  73. E. Arganda, A.M. Curiel, M.J. Herrero, D. Temes, Phys. Rev. D 71, 035011 (2005). arXiv:hep-ph/0407302 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xabier Marcano .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marcano, X. (2018). Seesaw Models with Heavy Neutrinos at the TeV Energy Range. In: Lepton Flavor Violation from Low Scale Seesaw Neutrinos with Masses Reachable at the LHC. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-94604-7_2

Download citation

Publish with us

Policies and ethics