Advertisement

Large De Novo Microdeletion in Epilepsy with Intellectual and Developmental Disabilities, with a Systems Biology Analysis

  • Kai Gao
  • Yujia Zhang
  • Ling Zhang
  • Weijing Kong
  • Han Xie
  • Jingmin Wang
  • Ye Wu
  • Xiru Wu
  • Xiaoyan Liu
  • Yuehua Zhang
  • Feng Zhang
  • Albert Cheung-Hoi Yu
  • Yuwu JiangEmail author
Chapter
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 21)

Abstract

Epilepsy is one of the most common complex neurological diseases. It is frequently associated with intellectual and developmental disabilities (ID/DD). In recent years, copy number variation (CNV), especially microdeletion, was proven to be a potential key factor of genetic epilepsy. In this paper, the authors tested the hypothesis that the large de novo rare CNV is an important cause of epilepsy with ID/DD. We performed a custom array comparative genomic hybridization (aCGH) to detect the CNVs of 96 Chinese epileptic patients with ID/DD. The aCGH was designed with a higher density probe coverage of 320 genes known to be involved in epilepsy and ID/DD with lower density whole-genome backbone coverage. We detected 9 large de novo rare microdeletions from 8 patients. These CNVs are located on 2q24.1, 2q33.1-q34, 5q13.2 (2 similar CNVs), 5q33.1-q34, 17p13.2, 22q11.21-q11.22 (2 identical CNVs) and Xp22.31. We also found that only a few genes in the CNVs are known epilepsy related genes. By analysis with systems biology, we found most of the genes are interacting genes known to be epilepsy related genes. We also found a gene motif “BGNADP”, constructed by BTD, GALNT10, NMUR2, AUTS2, DLG2 and PTPRD, would be a key motif in epilepsy and ID/DD. These findings strongly indicate that some large de novo rare microdeletion is an important pathological cause of epilepsy with ID/DD. Our study also found a gene motif “BGNADP” should be a key small network in epilepsy with ID/DD.

Keywords

Epilepsy Copy number variation System biology Microdeletion Intellectual and developmental disabilities 

Supplementary material

331367_1_En_9_MOESM1_ESM.xls (34 kb)
Supplementary Table 9.1 (XLS 34 kb)

References

  1. Al-Futaisi AM, Al-Kindi MN, Al-Mawali AM, Koul RL, Al-Adawi S, Al-Yahyaee SA. Novel mutation of GLRA1 in Omani families with hyperekplexia and mild mental retardation. Pediatr Neurol. 2012;46(2):89–93.CrossRefGoogle Scholar
  2. Arai A, Saito T, Hanai S, Sukigara S, Nabatame S, Otsuki T, Nakagawa E, Takahashi A, Kaneko Y, Kaido T, Saito Y, Sugai K, Sasaki M, Goto Y, Itoh M. Abnormal maturation and differentiation of neocortical neurons in epileptogenic cortical malformation: unique distribution of layer-specific marker cells of focal cortical dysplasia and hemimegalencephaly. Brain Res. 2012;1470:89–97.CrossRefGoogle Scholar
  3. Barco A, Pittenger C, Kandel ER. CREB, memory enhancement and the treatment of memory disorders: promises, pitfalls and prospects. Expert Opin Ther Targets. 2003;7(1):101–14.CrossRefGoogle Scholar
  4. Barge-Schaapveld DQ, Ofman R, Knegt AC, Alders M, Hohne W, Kemp S, Hennekam RC. Intellectual disability and hemizygous GPD2 mutation. Am J Med Genet A. 2013;161A(5):1044–50.CrossRefGoogle Scholar
  5. Bassuk AG, Geraghty E, Wu S, Mullen SA, Berkovic SF, Scheffer IE, Mefford HC. Deletions of 16p11.2 and 19p13.2 in a family with intellectual disability and generalized epilepsy. Am J Med Genet A. 2013;161A(7):1722–5.CrossRefGoogle Scholar
  6. Ben Khelifa H, Soyah N, Ben-Abdallah-Bouhjar I, Gritly R, Sanlaville D, Elghezal H, Saad A, Mougou-Zerelli S. Xp22.3 interstitial deletion: a recognizable chromosomal abnormality encompassing VCX3A and STS genes in a patient with X-linked ichthyosis and mental retardation. Gene. 2013;527(2):578–83.CrossRefGoogle Scholar
  7. Caciotti A, Tonin R, Rigoldi M, Ferri L, Catarzi S, Cavicchi C, Procopio E, Donati MA, Ficcadenti A, Fiumara A, Barone R, Garavelli L, Rocco MD, Filocamo M, Antuzzi D, Scarpa M, Mooney SD, Li B, Skouma A, Bianca S, Concolino D, Casalone R, Monti E, Pantaleo M, Giglio S, Guerrini R, Parini R, Morrone A. Optimizing the molecular diagnosis of GALNS: novel methods to define and characterize Morquio-A syndrome-associated mutations. Hum Mutat. 2015;36(3):357–68.CrossRefGoogle Scholar
  8. Caiazzo M, Colucci-D’Amato L, Volpicelli F, Speranza L, Petrone C, Pastore L, Stifani S, Ramirez F, Bellenchi GC, di Porzio U. Kruppel-like factor 7 is required for olfactory bulb dopaminergic neuron development. Exp Cell Res. 2011;317(4):464–73.CrossRefGoogle Scholar
  9. Cardoso C, Leventer RJ, Matsumoto N, Kuc JA, Ramocki MB, Mewborn SK, Dudlicek LL, May LF, Mills PL, Das S, Pilz DT, Dobyns WB, Ledbetter DH. The location and type of mutation predict malformation severity in isolated lissencephaly caused by abnormalities within the LIS1 gene. Hum Mol Genet. 2000;9(20):3019–28.CrossRefGoogle Scholar
  10. Carrascosa-Romero MC, Suela J, Alfaro-Ponce B, Cepillo-Boluda AJ. [X-chromosome-linked ichthyosis associated to epilepsy, hyperactivity, autism and mental retardation, due to the Xp22.31 microdeletion]. Rev Neurol. 2012;54(4): 241–48.Google Scholar
  11. Chelly J, Khelfaoui M, Francis F, Cherif B, Bienvenu T. Genetics and pathophysiology of mental retardation. Eur J Hum Genet. 2006;14(6):701–13.CrossRefGoogle Scholar
  12. Chen CP, Liu YP, Lin SP, Chen M, Tsai FJ, Chen YT, Chen LF, Hwang JK, Wang W. Ventriculomegaly, intrauterine growth restriction, and congenital heart defects as salient prenatal sonographic findings of Miller-Dieker lissencephaly syndrome associated with monosomy 17p (17p13.2 --> pter) in a fetus. Taiwan J Obstet Gynecol. 2010;49(1):81–6.CrossRefGoogle Scholar
  13. Choucair N, Mignon-Ravix C, Cacciagli P, Abou Ghoch J, Fawaz A, Megarbane A, Villard L, Chouery E. Evidence that homozygous PTPRD gene microdeletion causes trigonocephaly, hearing loss, and intellectual disability. Mol Cytogenet. 2015;8:39.CrossRefGoogle Scholar
  14. Chulanova TA, Echikov SN, Sadovnikov VB, Shchipakina TG. Functional peculiarities of MAP2 in DBA/2J inbred mice as a component of genetic predisposition to seizures. Bull Exp Biol Med. 2001;132(5):1058–61.CrossRefGoogle Scholar
  15. Cooper GM, Coe BP, Girirajan S, Rosenfeld JA, Vu TH, Baker C, Williams C, Stalker H, Hamid R, Hannig V, Abdel-Hamid H, Bader P, McCracken E, Niyazov D, Leppig K, Thiese H, Hummel M, Alexander N, Gorski J, Kussmann J, Shashi V, Johnson K, Rehder C, Ballif BC, Shaffer LG, Eichler EE. A copy number variation morbidity map of developmental delay. Nat Genet. 2011;43(9):838–46.CrossRefGoogle Scholar
  16. Corominas R, Yang X, Lin GN, Kang S, Shen Y, Ghamsari L, Broly M, Rodriguez M, Tam S, Trigg SA, Fan C, Yi S, Tasan M, Lemmens I, Kuang X, Zhao N, Malhotra D, Michaelson JJ, Vacic V, Calderwood MA, Roth FP, Tavernier J, Horvath S, Salehi-Ashtiani K, Korkin D, Sebat J, Hill DE, Hao T, Vidal M, Iakoucheva LM. Protein interaction network of alternatively spliced isoforms from brain links genetic risk factors for autism. Nat Commun. 2014;5:3650.CrossRefGoogle Scholar
  17. Daoud H, Gruchy N, Constans JM, Moussaoui E, Saumureau S, Bayou N, Amy M, Vedrine S, Vu PY, Rotig A, Laumonnier F, Vourc’h P, Andres CR, Leporrier N, Briault S. Haploinsufficiency of the GPD2 gene in a patient with nonsyndromic mental retardation. Hum Genet. 2009;124(6):649–58.CrossRefGoogle Scholar
  18. Derks EM, Ayub M, Chambert K, Del Favero J, Johnstone M, MacGregor S, Maclean A, McKechanie AG, McRae AF, Moran JL, Pickard BS, Purcell S, Sklar P, StClair DM, Wray NR, Visscher PM, Blackwood DH. A genome wide survey supports the involvement of large copy number variants in schizophrenia with and without intellectual disability. Am J Med Genet B Neuropsychiatr Genet. 2013;162B(8):847–54.CrossRefGoogle Scholar
  19. Dibbens LM, Mullen S, Helbig I, Mefford HC, Bayly MA, Bellows S, Leu C, Trucks H, Obermeier T, Wittig M, Franke A, Caglayan H, Yapici Z, Sander T, Eichler EE, Scheffer IE, Mulley JC, Berkovic SF. Familial and sporadic 15q13.3 microdeletions in idiopathic generalized epilepsy: precedent for disorders with complex inheritance. Hum Mol Genet. 2009;18(19):3626–31.CrossRefGoogle Scholar
  20. Doyle RL, Sellinger OZ. Differences in activity in cerebral methyltransferases and monoamine oxidases between audiogenic seizure susceptible and resistant mice and deermice. Pharmacol Biochem Behav. 1980;13(4):589–91.CrossRefGoogle Scholar
  21. Driscoll DA, Budarf ML, Emanuel BS. A genetic etiology for DiGeorge syndrome: consistent deletions and microdeletions of 22q11. Am J Hum Genet. 1992;50(5):924–33.PubMedPubMedCentralGoogle Scholar
  22. Elfving B, Bonefeld BE, Rosenberg R, Wegener G. Differential expression of synaptic vesicle proteins after repeated electroconvulsive seizures in rat frontal cortex and hippocampus. Synapse. 2008;62(9):662–70.CrossRefGoogle Scholar
  23. Fryburg JS, Lin KY, Golden WL. Chromosome 22q11.2 deletion in a boy with Opitz (G/BBB) syndrome. Am J Med Genet. 1996;62(3):274–5.CrossRefGoogle Scholar
  24. Fukata Y, Lovero KL, Iwanaga T, Watanabe A, Yokoi N, Tabuchi K, Shigemoto R, Nicoll RA, Fukata M. Disruption of LGI1-linked synaptic complex causes abnormal synaptic transmission and epilepsy. Proc Natl Acad Sci U S A. 2010;107(8):3799–804.CrossRefGoogle Scholar
  25. Giannotti A, Digilio MC, Marino B, Mingarelli R, Dallapiccola B. Cayler cardiofacial syndrome and del 22q11: part of the CATCH22 phenotype. Am J Med Genet. 1994;53(3):303–4.CrossRefGoogle Scholar
  26. Glass IA, Swindlehurst CA, Aitken DA, McCrea W, Boyd E. Interstitial deletion of the long arm of chromosome 2 with normal levels of isocitrate dehydrogenase. J Med Genet. 1989;26(2):127–30.CrossRefGoogle Scholar
  27. Gogliotti RG, Lutz C, Jorgensen M, Huebsch K, Koh S, Didonato CJ. Characterization of a commonly used mouse model of SMA reveals increased seizure susceptibility and heightened fear response in FVB/N mice. Neurobiol Dis. 2011;43(1):142–51.CrossRefGoogle Scholar
  28. Grayton HM, Fernandes C, Rujescu D, Collier DA. Copy number variations in neurodevelopmental disorders. Prog Neurobiol. 2012;99(1):81–91.CrossRefGoogle Scholar
  29. Grishin A, Li H, Levitan ES, Zaks-Makhina E. Identification of gamma-aminobutyric acid receptor-interacting factor 1 (TRAK2) as a trafficking factor for the K+ channel Kir2.1. J Biol Chem. 2006;281(40):30104–11.CrossRefGoogle Scholar
  30. Harvard C, Strong E, Mercier E, Colnaghi R, Alcantara D, Chow E, Martell S, Tyson C, Hrynchak M, McGillivray B, Hamilton S, Marles S, Mhanni A, Dawson AJ, Pavlidis P, Qiao Y, Holden JJ, Lewis SM, O’Driscoll M, Rajcan-Separovic E. Understanding the impact of 1q21.1 copy number variant. Orphanet J Rare Dis. 2011;6:54.CrossRefGoogle Scholar
  31. He Y, Kulasiri D, Samarasinghe S. Systems biology of synaptic plasticity: a review on N-methyl-D-aspartate receptor mediated biochemical pathways and related mathematical models. Biosystems. 2014;122:7–18.CrossRefGoogle Scholar
  32. Helbig I, Hartmann C, Mefford HC. Clarifying the role of the 22q11.2 microdeletion in juvenile myoclonic epilepsy. Epilepsy Behav. 2013;29(3):589–90.CrossRefGoogle Scholar
  33. Helbig I, Mefford HC, Sharp AJ, Guipponi M, Fichera M, Franke A, Muhle H, de Kovel C, Baker C, von Spiczak S, Kron KL, Steinich I, Kleefuss-Lie AA, Leu C, Gaus V, Schmitz B, Klein KM, Reif PS, Rosenow F, Weber Y, Lerche H, Zimprich F, Urak L, Fuchs K, Feucht M, Genton P, Thomas P, Visscher F, de Haan GJ, Moller RS, Hjalgrim H, Luciano D, Wittig M, Nothnagel M, Elger CE, Nurnberg P, Romano C, Malafosse A, Koeleman BP, Lindhout D, Stephani U, Schreiber S, Eichler EE, Sander T. 15q13.3 microdeletions increase risk of idiopathic generalized epilepsy. Nat Genet. 2009;41(2):160–2.CrossRefGoogle Scholar
  34. Hempelmann A, Taylor KP, Heils A, Lorenz S, Prud’homme JF, Nabbout R, Dulac O, Rudolf G, Zara F, Bianchi A, Robinson R, Gardiner RM, Covanis A, Lindhout D, Stephani U, Elger CE, Weber YG, Lerche H, Nurnberg P, Kron KL, Scheffer IE, Mulley JC, Berkovic SF, Sander T. Exploration of the genetic architecture of idiopathic generalized epilepsies. Epilepsia. 2006;47(10):1682–90.CrossRefGoogle Scholar
  35. Hideyama T, Yamashita T, Nishimoto Y, Suzuki T, Kwak S. Novel etiological and therapeutic strategies for neurodiseases: RNA editing enzyme abnormality in sporadic amyotrophic lateral sclerosis. J Pharmacol Sci. 2010;113(1):9–13.CrossRefGoogle Scholar
  36. Hoeffer CA, Sanchez E, Hagerman RJ, Mu Y, Nguyen DV, Wong H, Whelan AM, Zukin RS, Klann E, Tassone F. Altered mTOR signaling and enhanced CYFIP2 expression levels in subjects with fragile X syndrome. Genes Brain Behav. 2012;11(3):332–41.CrossRefGoogle Scholar
  37. Hymes J, Stanley CM, Wolf B. Mutations in BTD causing biotinidase deficiency. Hum Mutat. 2001;18(5):375–81.CrossRefGoogle Scholar
  38. Jalava NS, Lopez-Picon FR, Kukko-Lukjanov TK, Holopainen IE. Changes in microtubule-associated protein-2 (MAP2) expression during development and after status epilepticus in the immature rat hippocampus. Int J Dev Neurosci. 2007;25(2):121–31.CrossRefGoogle Scholar
  39. Jolley A, Corbett M, McGregor L, Waters W, Brown S, Nicholl J, Yu S. De novo intragenic deletion of the autism susceptibility candidate 2 (AUTS2) gene in a patient with developmental delay: a case report and literature review. Am J Med Genet A. 2013;161A(6):1508–12.CrossRefGoogle Scholar
  40. Kandel ER, Dudai Y, Mayford MR. The molecular and systems biology of memory. Cell. 2014;157(1):163–86.CrossRefGoogle Scholar
  41. Kelley RI, Zackai EH, Emanuel BS, Kistenmacher M, Greenberg F, Punnett HH. The association of the DiGeorge anomalad with partial monosomy of chromosome 22. J Pediatr. 1982;101(2):197–200.CrossRefGoogle Scholar
  42. Kerjan G, Gleeson JG. Genetic mechanisms underlying abnormal neuronal migration in classical lissencephaly. Trends Genet. 2007;23(12):623–30.CrossRefGoogle Scholar
  43. Kim EH, Yum MS, Lee BH, Kim HW, Lee HJ, Kim GH, Lee YJ, Yoo HW, Ko TS. Epilepsy and other neuropsychiatric manifestations in children and adolescents with 22q11.2 deletion syndrome. J Clin Neurol. 2016;12(1):85–92.CrossRefGoogle Scholar
  44. Klatte K, Kirschstein T, Otte D, Pothmann L, Muller L, Tokay T, Kober M, Uebachs M, Zimmer A, Beck H. Impaired D-serine-mediated cotransmission mediates cognitive dysfunction in epilepsy. J Neurosci. 2013;33(32):13066–80.CrossRefGoogle Scholar
  45. Kogan JH, Gross AK, Featherstone RE, Shin R, Chen Q, Heusner CL, Adachi M, Lin A, Walton NM, Miyoshi S, Miyake S, Tajinda K, Ito H, Siegel SJ, Matsumoto M. Mouse model of chromosome 15q13.3 microdeletion syndrome demonstrates features related to autism spectrum disorder. J Neurosci. 2015;35(49):16282–94.CrossRefGoogle Scholar
  46. de Kovel CG, Trucks H, Helbig I, Mefford HC, Baker C, Leu C, Kluck C, Muhle H, von Spiczak S, Ostertag P, Obermeier T, Kleefuss-Lie AA, Hallmann K, Steffens M, Gaus V, Klein KM, Hamer HM, Rosenow F, Brilstra EH, Trenite DK, Swinkels ME, Weber YG, Unterberger I, Zimprich F, Urak L, Feucht M, Fuchs K, Moller RS, Hjalgrim H, De Jonghe P, Suls A, Ruckert IM, Wichmann HE, Franke A, Schreiber S, Nurnberg P, Elger CE, Lerche H, Stephani U, Koeleman BP, Lindhout D, Eichler EE, Sander T. Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized epilepsies. Brain. 2010;133(Pt 1):23–32.CrossRefGoogle Scholar
  47. Lacassie Y, Arriaza MI. Opitz GBBB syndrome and the 22q11.2 deletion. Am J Med Genet. 1996;62(3):318.CrossRefGoogle Scholar
  48. Layouni S, Salzmann A, Guipponi M, Mouthon D, Chouchane L, Dogui M, Malafosse A. Genetic linkage study of an autosomal recessive form of juvenile myoclonic epilepsy in a consanguineous Tunisian family. Epilepsy Res. 2010;90(1-2):33–8.CrossRefGoogle Scholar
  49. Lee BI, Heo K. Epilepsy: new genes, new technologies, new insights. Lancet Neurol. 2014;13(1):7–9.CrossRefGoogle Scholar
  50. Leoyklang P, Suphapeetiporn K, Siriwan P, Desudchit T, Chaowanapanja P, Gahl WA, Shotelersuk V. Heterozygous nonsense mutation SATB2 associated with cleft palate, osteoporosis, and cognitive defects. Hum Mutat. 2007;28(7):732–8.CrossRefGoogle Scholar
  51. Li J, Yu C, Li Y, Liu B, Liu Y, Shu N, Song M, Zhou Y, Zhu W, Li K, Jiang T. COMT val158met modulates association between brain white matter architecture and IQ. Am J Med Genet B Neuropsychiatr Genet. 2009;150B(3):375–80.CrossRefGoogle Scholar
  52. Lin WD, Chang KP, Wang CH, Chen SJ, Fan PC, Weng WC, Lin WC, Tsai Y, Tsai CH, Chou IC, Tsai FJ. Molecular aspects of Dravet syndrome patients in Taiwan. Clin Chim Acta. 2013;421:34–40.CrossRefGoogle Scholar
  53. Liu FY, Wang XF, Li MW, Li JM, Xi ZQ, Luan GM, Zhang JG, Wang YP, Sun JJ, Li YL. Upregulated expression of postsynaptic density-93 and N-methyl-D-aspartate receptors subunits 2B mRNA in temporal lobe tissue of epilepsy. Biochem Biophys Res Commun. 2007;358(3):825–30.CrossRefGoogle Scholar
  54. Ma D, Williamson P, Januszewski A, Nogaro MC, Hossain M, Ong LP, Shu Y, Franks NP, Maze M. Xenon mitigates isoflurane-induced neuronal apoptosis in the developing rodent brain. Anesthesiology. 2007;106(4):746–53.CrossRefGoogle Scholar
  55. Maden CH, Gomes J, Schwarz Q, Davidson K, Tinker A, Ruhrberg C. NRP1 and NRP2 cooperate to regulate gangliogenesis, axon guidance and target innervation in the sympathetic nervous system. Dev Biol. 2012;369(2):277–85.CrossRefGoogle Scholar
  56. Matsuoka R, Takao A, Kimura M, Imamura S, Kondo C, Joh-o K, Ikeda K, Nishibatake M, Ando M, Momma K. Confirmation that the conotruncal anomaly face syndrome is associated with a deletion within 22q11.2. Am J Med Genet. 1994;53(3):285–9.CrossRefGoogle Scholar
  57. McDonald-McGinn DM, Driscoll DA, Bason L, Christensen K, Lynch D, Sullivan K, Canning D, Zavod W, Quinn N, Rome J. Autosomal dominant “Opitz” GBBB syndrome due to a 22q11.2 deletion. Am J Med Genet. 1995;59(1):103–13.CrossRefGoogle Scholar
  58. Mefford HC, Muhle H, Ostertag P, von Spiczak S, Buysse K, Baker C, Franke A, Malafosse A, Genton P, Thomas P, Gurnett CA, Schreiber S, Bassuk AG, Guipponi M, Stephani U, Helbig I, Eichler EE. Genome-wide copy number variation in epilepsy: novel susceptibility loci in idiopathic generalized and focal epilepsies. PLoS Genet. 2010;6(5):e1000962.CrossRefGoogle Scholar
  59. Mefford HC, Yendle SC, Hsu C, Cook J, Geraghty E, McMahon JM, Eeg-Olofsson O, Sadleir LG, Gill D, Ben-Zeev B, Lerman-Sagie T, Mackay M, Freeman JL, Andermann E, Pelakanos JT, Andrews I, Wallace G, Eichler EE, Berkovic SF, Scheffer IE. Rare copy number variants are an important cause of epileptic encephalopathies. Ann Neurol. 2011;70(6):974–85.CrossRefGoogle Scholar
  60. Mercer EA, Korhonen L, Skoglosa Y, Olsson PA, Kukkonen JP, Lindholm D. NAIP interacts with hippocalcin and protects neurons against calcium-induced cell death through caspase-3-dependent and -independent pathways. EMBO J. 2000;19(14):3597–607.CrossRefGoogle Scholar
  61. Mertz LG, Christensen R, Vogel I, Hertz JM, Nielsen KB, Gronskov K, Ostergaard JR. Angelman syndrome in Denmark. Birth incidence, genetic findings, and age at diagnosis. Am J Med Genet A. 2013;161A(9):2197–203.CrossRefGoogle Scholar
  62. Messmer K, Remington MP, Skidmore F, Fishman PS. Induction of tyrosine hydroxylase expression by the transcription factor Pitx3. Int J Dev Neurosci. 2007;25(1):29–37.CrossRefGoogle Scholar
  63. Mitra S, Das S, Chakrabarti J. Systems biology of cancer biomarker detection. Cancer Biomark. 2013;13(4):201–13.CrossRefGoogle Scholar
  64. Mittal S, Shah AK, Barkmeier DT, Loeb JA. Systems biology of human epilepsy applied to patients with brain tumors. Epilepsia. 2013;54(Suppl 9):35–9.CrossRefGoogle Scholar
  65. Montojo J, Zuberi K, Rodriguez H, Kazi F, Wright G, Donaldson SL, Morris Q, Bader GD. GeneMANIA Cytoscape plugin: fast gene function predictions on the desktop. Bioinformatics. 2010;26(22):2927–8.CrossRefGoogle Scholar
  66. Mulley JC, Scheffer IE, Desai T, Bayly MA, Grinton BE, Vears DF, Berkovic SF, Dibbens LM. Investigation of the 15q13.3 CNV as a genetic modifier for familial epilepsies with variable phenotypes. Epilepsia. 2011;52(10):e139–42.CrossRefGoogle Scholar
  67. Nagamani SC, Erez A, Ben-Zeev B, Frydman M, Winter S, Zeller R, El-Khechen D, Escobar L, Stankiewicz P, Patel A, Cheung SW. Detection of copy-number variation in AUTS2 gene by targeted exonic array CGH in patients with developmental delay and autistic spectrum disorders. Eur J Hum Genet. 2013;21(3):343–6.CrossRefGoogle Scholar
  68. Oksenberg N, Stevison L, Wall JD, Ahituv N. Function and regulation of AUTS2, a gene implicated in autism and human evolution. PLoS Genet. 2013;9(1):e1003221.CrossRefGoogle Scholar
  69. Olszewski AK, Radoeva PD, Fremont W, Kates WR, Antshel KM. Is child intelligence associated with parent and sibling intelligence in individuals with developmental disorders? An investigation in youth with 22q11.2 deletion (velo-cardio-facial) syndrome. Res Dev Disabil. 2014;35(12):3582–90.CrossRefGoogle Scholar
  70. Owuor K, Harel NY, Englot DJ, Hisama F, Blumenfeld H, Strittmatter SM. LGI1-associated epilepsy through altered ADAM23-dependent neuronal morphology. Mol Cell Neurosci. 2009;42(4):448–57.CrossRefGoogle Scholar
  71. Paciorkowski AR, Thio LL, Rosenfeld JA, Gajecka M, Gurnett CA, Kulkarni S, Chung WK, Marsh ED, Gentile M, Reggin JD, Wheless JW, Balasubramanian S, Kumar R, Christian SL, Marini C, Guerrini R, Maltsev N, Shaffer LG, Dobyns WB. Copy number variants and infantile spasms: evidence for abnormalities in ventral forebrain development and pathways of synaptic function. Eur J Hum Genet. 2011;19(12):1238–45.CrossRefGoogle Scholar
  72. Pichler I, Schwienbacher C, Zanon A, Fuchsberger C, Serafin A, Facheris MF, Marroni F, Pattaro C, Shen Y, Tellgren-Roth C, Gyllensten U, Gusella JF, Hicks AA, Pramstaller PP. Fine-mapping of restless legs locus 4 (RLS4) identifies a haplotype over the SPATS2L and KCTD18 genes. J Mol Neurosci. 2013;49(3):600–5.CrossRefGoogle Scholar
  73. Poot M, van der Smagt JJ, Brilstra EH, Bourgeron T. Disentangling the myriad genomics of complex disorders, specifically focusing on autism, epilepsy, and schizophrenia. Cytogenet Genome Res. 2011;135(3-4):228–40.CrossRefGoogle Scholar
  74. Prior TW. Spinal muscular atrophy diagnostics. J Child Neurol. 2007;22(8):952–6.CrossRefGoogle Scholar
  75. Riley KN, Catalano LM, Bernat JA, Adams SD, Martin DM, Lalani SR, Patel A, Burnside RD, Innis JW, Rudd MK. Recurrent deletions and duplications of chromosome 2q11.2 and 2q13 are associated with variable outcomes. Am J Med Genet A. 2015;167A(11):2664–73.CrossRefGoogle Scholar
  76. Romanitan MO, Popescu BO, Winblad B, Bajenaru OA, Bogdanovic N. Occludin is overexpressed in Alzheimer’s disease and vascular dementia. J Cell Mol Med. 2007;11(3):569–79.CrossRefGoogle Scholar
  77. Rosenfeld JA, Ballif BC, Lucas A, Spence EJ, Powell C, Aylsworth AS, Torchia BA, Shaffer LG. Small deletions of SATB2 cause some of the clinical features of the 2q33.1 microdeletion syndrome. PLoS One. 2009;4(8):e6568.CrossRefGoogle Scholar
  78. Ryu HJ, Kim JE, Yeo SI, Kim DS, Kwon OS, Choi SY, Kang TC. Potential roles of D-serine and serine racemase in experimental temporal lobe epilepsy. J Neurosci Res. 2010;88(11):2469–82.PubMedGoogle Scholar
  79. Scambler PJ, Carey AH, Wyse RK, Roach S, Dumanski JP, Nordenskjold M, Williamson R. Microdeletions within 22q11 associated with sporadic and familial DiGeorge syndrome. Genomics. 1991;10(1):201–6.CrossRefGoogle Scholar
  80. Sedghi M, Nouri N, Abdali H, Memarzadeh M, Nouri N. A case report of 22q11 deletion syndrome confirmed by array-CGH method. J Res Med Sci. 2012;17(3):310–2.PubMedPubMedCentralGoogle Scholar
  81. Seidl R, Bajo M, Bohm K, LaCasse EC, MacKenzie AE, Cairns N, Lubec G. Neuronal apoptosis inhibitory protein (NAIP)-like immunoreactivity in brains of adult patients with Down syndrome. J Neural Transm Suppl. 1999;57:283–91.PubMedGoogle Scholar
  82. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.CrossRefGoogle Scholar
  83. Sisodiya SM, Mefford HC. Genetic contribution to common epilepsies. Curr Opin Neurol. 2011;24(2):140–5.CrossRefGoogle Scholar
  84. Speed D, Hoggart C, Petrovski S, Tachmazidou I, Coffey A, Jorgensen A, Eleftherohorinou H, De Iorio M, Todaro M, De T, Smith D, Smith PE, Jackson M, Cooper P, Kellett M, Howell S, Newton M, Yerra R, Tan M, French C, Reuber M, Sills GE, Chadwick D, Pirmohamed M, Bentley D, Scheffer I, Berkovic S, Balding D, Palotie A, Marson A, O’Brien TJ, Johnson MR. A genome-wide association study and biological pathway analysis of epilepsy prognosis in a prospective cohort of newly treated epilepsy. Hum Mol Genet. 2014;23(1):247–58.CrossRefGoogle Scholar
  85. Spreiz A, Haberlandt E, Baumann M, Baumgartner Sigl S, Fauth C, Gautsch K, Karall D, Janetschek C, Rostasy K, Scholl-Burgi S, Zotter S, Utermann G, Zschocke J, Kotzot D. Chromosomal microaberrations in patients with epilepsy, intellectual disability, and congenital anomalies. Clin Genet. 2014;86(4):361–6.CrossRefGoogle Scholar
  86. Sun J, Jia P, Fanous AH, van den Oord E, Chen X, Riley BP, Amdur RL, Kendler KS, Zhao Z. Schizophrenia gene networks and pathways and their applications for novel candidate gene selection. PLoS One. 2010;5(6):e11351.CrossRefGoogle Scholar
  87. Tiwari VN, Sundaram SK, Chugani HT, Huq AH. Infantile spasms are associated with abnormal copy number variations. J Child Neurol. 2013;28(10):1191–6.CrossRefGoogle Scholar
  88. Tuchman R, Moshe SL, Rapin I. Convulsing toward the pathophysiology of autism. Brain Dev. 2009;31(2):95–103.CrossRefGoogle Scholar
  89. Usui D, Shimada S, Shimojima K, Sugawara M, Kawasaki H, Shigematu H, Takahashi Y, Inoue Y, Imai K, Yamamoto T. Interstitial duplication of 2q32.1-q33.3 in a patient with epilepsy, developmental delay, and autistic behavior. Am J Med Genet A. 2013;161A(5):1078–84.CrossRefGoogle Scholar
  90. Van Buggenhout G, Van Ravenswaaij-Arts C, Mc Maas N, Thoelen R, Vogels A, Smeets D, Salden I, Matthijs G, Fryns JP, Vermeesch JR. The del(2)(q32.2q33) deletion syndrome defined by clinical and molecular characterization of four patients. Eur J Med Genet. 2005;48(3):276–89.CrossRefGoogle Scholar
  91. Vanlerberghe C, Petit F, Malan V, Vincent-Delorme C, Bouquillon S, Boute O, Holder-Espinasse M, Delobel B, Duban B, Vallee L, Cuisset JM, Lemaitre MP, Vantyghem MC, Pigeyre M, Lanco-Dosen S, Plessis G, Gerard M, Decamp M, Mathieu M, Morin G, Jedraszak G, Bilan F, Gilbert-Dussardier B, Fauvert D, Roume J, Cormier-Daire V, Caumes R, Puechberty J, Genevieve D, Sarda P, Pinson L, Blanchet P, Lemeur N, Sheth F, Manouvrier-Hanu S, Andrieux J. 15q11.2 microdeletion (BP1-BP2) and developmental delay, behaviour issues, epilepsy and congenital heart disease: a series of 52 patients. Eur J Med Genet. 2015;58(3):140–7.CrossRefGoogle Scholar
  92. Virgintino D, Errede M, Robertson D, Capobianco C, Girolamo F, Vimercati A, Bertossi M, Roncali L. Immunolocalization of tight junction proteins in the adult and developing human brain. Histochem Cell Biol. 2004;122(1):51–9.CrossRefGoogle Scholar
  93. Wang JW, Shi XY, Kurahashi H, Hwang SK, Ishii A, Higurashi N, Kaneko S, Hirose S. Prevalence of SCN1A mutations in children with suspected Dravet syndrome and intractable childhood epilepsy. Epilepsy Res. 2012;102(3):195–200.CrossRefGoogle Scholar
  94. Williams HJ, Owen MJ, O’Donovan MC. Schizophrenia genetics: new insights from new approaches. Br Med Bull. 2009;91:61–74.CrossRefGoogle Scholar
  95. Yamada K, Iwayama Y, Toyota T, Ohnishi T, Ohba H, Maekawa M, Yoshikawa T. Association study of the KCNJ3 gene as a susceptibility candidate for schizophrenia in the Chinese population. Hum Genet. 2012;131(3):443–51.CrossRefGoogle Scholar
  96. Yu HE, Hawash K, Picker J, Stoler J, Urion D, Wu BL, Shen Y. A recurrent 1.71 Mb genomic imbalance at 2q13 increases the risk of developmental delay and dysmorphism. Clin Genet. 2012;81(3):257–64.CrossRefGoogle Scholar
  97. Zhang F, Gu W, Hurles ME, Lupski JR. Copy number variation in human health, disease, and evolution. Annu Rev Genomics Hum Genet. 2009;10:451–81.CrossRefGoogle Scholar
  98. Zhang K, Gao J, An C, Gao X, Zheng Z, Li R, Huang S, Zhang F. An association study between cathechol-O-methyltransferase gene and mental retardation in the Chinese Han population. Neurosci Lett. 2007;419(1):83–7.CrossRefGoogle Scholar
  99. Zhang Y, Kong W, Gao Y, Liu X, Gao K, Xie H, Wu Y, Zhang Y, Wang J, Gao F, Wu X, Jiang Y. Gene mutation analysis in 253 Chinese children with unexplained epilepsy and intellectual/developmental disabilities. PLoS One. 2015;10(11):e0141782.CrossRefGoogle Scholar
  100. Zou J, Zheng MW, Li G, Su ZG. Advanced systems biology methods in drug discovery and translational biomedicine. Biomed Res Int. 2013;2013:742835.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Kai Gao
    • 1
  • Yujia Zhang
    • 1
  • Ling Zhang
    • 2
  • Weijing Kong
    • 1
  • Han Xie
    • 1
  • Jingmin Wang
    • 1
  • Ye Wu
    • 1
  • Xiru Wu
    • 1
  • Xiaoyan Liu
    • 1
  • Yuehua Zhang
    • 1
  • Feng Zhang
    • 2
  • Albert Cheung-Hoi Yu
    • 3
    • 4
  • Yuwu Jiang
    • 1
    Email author
  1. 1.Department of PediatricsPeking University First Hospital, Peking University Health Science CenterBeijingChina
  2. 2.Institute of Reproduction and DevelopmentObstetrics and Gynecology Hospital of Fudan UniversityShanghaiChina
  3. 3.Laboratory for Functional Study of Astrocytes, Department of NeurobiologySchool of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Neuroscience Research Institute, Peking UniversityBeijingChina
  4. 4.Hai Kang Life Corporation Ltd.BeijingChina

Personalised recommendations