Advertisement

Synaptic Excitatory-Inhibitory Balance Underlying Efficient Neural Coding

  • Shanglin Zhou
  • Yuguo YuEmail author
Chapter
  • 829 Downloads
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 21)

Abstract

Both theoretical and experimental evidence indicate that synaptic excitation and inhibition in the cerebral cortex are well-balanced during the resting state and sensory processing. Here, we briefly summarize the evidence for how neural circuits are adjusted to achieve this balance. Then, we discuss how such excitatory and inhibitory balance shapes stimulus representation and information propagation, two basic functions of neural coding. We also point out the benefit of adopting such a balance during neural coding. We conclude that excitatory and inhibitory balance may be a fundamental mechanism underlying efficient coding.

Keywords

Stimulus representation Information propagation Excitatory-inhibitory balance Sparse coding 

Notes

Acknowledgements

YY thanks for the support from the National Natural Science Foundation of China (81761128011, 31571070), Shanghai Science and Technology Committee support (16410722600), the program for the Professor of Special Appointment (Eastern Scholar SHH1140004) at Shanghai Institutions of Higher Learning, and Omics-based precision medicine of epilepsy entrusted by the Key Research Project of the Ministry of Science and Technology of China (Grant No. 2016YFC0904400) for their support.

Author Contributions

Yuguo Yu and Shanglin Zhou designed research; Yuguo Yu and Shanglin Zhou performed research; Shanglin Zhou and Yuguo Yu wrote the paper. All authors reviewed the manuscript.

Conflict of Interest

The authors declare no competing financial interests.

References

  1. Aertsen A, Diesmann M, Gewaltig MO. Propagation of synchronous spiking activity in feedforward neural networks. J Physiol Paris. 1996;90(3–4):243–7.CrossRefGoogle Scholar
  2. Alle H, Roth A, Geiger JRP. Energy-efficient action potentials in hippocampal mossy fibers. Science. 2009;325:1405–8. Available at: http://www.sciencemag.org/content/325/5946/1405CrossRefGoogle Scholar
  3. Amit DJ, Brunel N. A model of spontaneous activity and local delay activity during delay periods in the cerebral cortex. Cereb Cortex. 1997;7:237–52. Available at: http://cercor.oxfordjournals.org/content/7/3/237?related-urls=yes&legid=cercor;7/3/237
  4. Anderson JS, Carandini M, Ferster D. Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. J Neurophysiol. 2000;84:909–26.CrossRefGoogle Scholar
  5. Atallah BV, Scanziani M. Instantaneous modulation of gamma oscillation frequency by balancing excitation with inhibition. Neuron. 2009;62:566–77. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0896627309003511CrossRefGoogle Scholar
  6. Attwell D, Laughlin SB. An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab. 2001;21:1133–45. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11598490CrossRefGoogle Scholar
  7. Averbeck BB, Latham PE, Pouget A. Neural correlations, population coding and computation. Nat Rev Neurosci. 2006;7(5):358–66.CrossRefGoogle Scholar
  8. Aviel Y, Mehring C, Abeles M, Horn D. On embedding synfire chains in a balanced network. Neural Comput. 2003;15:1321–40. Available at: http://www.mitpressjournals.org/doi/abs/10.1162/089976603321780290CrossRefGoogle Scholar
  9. Barlow HBH. Possible principles underlying the transformation of sensory messages. In: Rosenblith W, editor. Sensory communication. Cambridge, MA: MIT Press; 1961. p. 217–34.Google Scholar
  10. Beggs JM. The criticality hypothesis: how local cortical networks might optimize information processing. Philos Trans R Soc A Math Phys Eng Sci. 2008;366:329–43. Available at: http://rsta.royalsocietypublishing.org/content/366/1864/329.abstractCrossRefGoogle Scholar
  11. Boerlin M, Machens CK, Denève S. Predictive coding of dynamical variables in balanced spiking networks. PLoS Comput Biol. 2013;9:e1003258.CrossRefGoogle Scholar
  12. Brunel N. Dynamics of sparsely connected networls of excitatory and inhibitory neurons. J Comput Neurosci. 2000;8:183–208.CrossRefGoogle Scholar
  13. Cardin JA, Palmer LA, Contreras D. Stimulus feature selectivity in excitatory and inhibitory neurons in primary visual cortex. J Neurosci. 2007;27:10333–44.CrossRefGoogle Scholar
  14. D’Amour JA, Froemke RC. Inhibitory and excitatory spike-timing-dependent plasticity in the auditory cortex. Neuron. 2015;86:514–28.CrossRefGoogle Scholar
  15. Dehghani N, Peyrache A, Telenczuk B, Le Van Quyen M, Halgren E, Cash SS, Hatsopoulos NG, Destexhe A. Dynamic balance of excitation and inhibition in human and monkey neocortex. Sci Rep. 2016;6:1–12. Available at: http://arxiv.org/abs/1410.2610CrossRefGoogle Scholar
  16. Denève S, Machens CK. Efficient codes and balanced networks. Nat Neurosci. 2016;19:375–82. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26906504CrossRefGoogle Scholar
  17. Dhawale AK, Hagiwara A, Bhalla US, Murthy VN, Albeanu DF. Non-redundant odor coding by sister mitral cells revealed by light addressable glomeruli in the mouse. Nat Neurosci. 2010;13:1404–12. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3208311&tool=pmcentrez&rendertype=abstractCrossRefGoogle Scholar
  18. Diesmann M, Gewaltig MO, Aertsen A. Stable propagation of synchronous spiking in cortical neural networks. Nature. 1999;402:529–33.CrossRefGoogle Scholar
  19. Froemke RC. Plasticity of cortical excitatory-inhibitory balance. Annu Rev Neurosci. 2015;38:195–219.CrossRefGoogle Scholar
  20. Froemke RC, Merzenich MM, Schreiner CE. A synaptic memory trace for cortical receptive field plasticity. Nature. 2007;450:425–9.  https://doi.org/10.1038/nature06289.CrossRefPubMedGoogle Scholar
  21. Gewaltig MO, Diesmann M, Aertsen A. Propagation of cortical synfire activity: survival probability in single trials and stability in the mean. Neural Netw. 2001;14:657–73.CrossRefGoogle Scholar
  22. Haider B, Duque A, Hasenstaub AR, Mccormick DA. Behavioral/systems/cognitive neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. J Neurosci. 2006;26:4535–45.CrossRefGoogle Scholar
  23. Haldeman C, Beggs JM. Critical branching captures activity in living neural networks and maximizes the number of metastable states. Phys Rev Lett. 2005;94(5):058101.CrossRefGoogle Scholar
  24. Kistler WM, Gerstner W. Stable propagation of activity pulses in populations of spiking neurons. Neural Comput. 2002;14:987–97. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11972904CrossRefGoogle Scholar
  25. Koren V, Deneve S. Computational account of spontaneous activity as a signature of predictive coding. PLoS Comput Biol. 2017;13:e1005355.CrossRefGoogle Scholar
  26. Koulakov AA, Rinberg D. Sparse incomplete representations: a potential role of olfactory granule cells. Neuron. 2011;72:124–36.CrossRefGoogle Scholar
  27. Kumar A, Rotter S, Aertsen A. Conditions for propagating synchronous spiking and asynchronous firing rates in a cortical network model. J Neurosci. 2008;28:5268–80. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18480283CrossRefGoogle Scholar
  28. Kumar A, Rotter S, Aertsen A. Spiking activity propagation in neuronal networks: reconciling different perspectives on neural coding. Nat Rev Neurosci. 2010;11:615–27. Available at: http://www.nature.com/doifinder/10.1038/nrn2886CrossRefGoogle Scholar
  29. Lim S, Goldman MS. Balanced cortical microcircuitry for maintaining information in working memory. Nat Neurosci. 2013;16:1306–14. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23955560CrossRefGoogle Scholar
  30. Litvak V, Sompolinsky H, Segev I, Abeles M. On the transmission of rate code in long feedforward networks with excitatory-inhibitory balance. J Neurosci. 2003;23:3006–15.CrossRefGoogle Scholar
  31. Liu BH, Li YT, Ma WP, Pan CJ, Zhang LI, Tao HW. Broad inhibition sharpens orientation selectivity by expanding input dynamic range in mouse simple cells. Neuron. 2011;71:542–54.CrossRefGoogle Scholar
  32. Liu G. Local structural balance and functional interaction of excitatory and inhibitory synapses in hippocampal dendrites. Nat Neurosci. 2004;7:373–9.CrossRefGoogle Scholar
  33. Martinez LM, Alonso J-M, Reid RC, Hirsch JA. Laminar processing of stimulus orientation in cat visual cortex. J Physiol. 2002;540:321–33.CrossRefGoogle Scholar
  34. Migliore M, Hines ML, Mctavish TS, Shepherd GM. Functional roles of distributed synaptic clusters in the mitral-granule cell network of the olfactory bulb. Front Integr Neurosci. 2010;4:122.CrossRefGoogle Scholar
  35. Monier C, Fournier J, Frégnac Y. In vitro and in vivo measures of evoked excitatory and inhibitory conductance dynamics in sensory cortices. J Neurosci Methods. 2008;169:323–65.CrossRefGoogle Scholar
  36. Moreno-Bote R, Beck J, Kanitscheider I, Pitkow X, Latham P, Pouget A. Information-limiting correlations. Nat Neurosci. 2014;17:1410–7.  https://doi.org/10.1038/nn.3807.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Murphy BK, Miller KD. Balanced amplification: a new mechanism of selective amplification of neural activity patterns. Neuron. 2009;61:635–48.  https://doi.org/10.1016/j.neuron.2009.02.005.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Murray JD, Anticevic A, Gancsos M, Ichinose M, Corlett PR, Krystal JH, Wang XJ. Linking microcircuit dysfunction to cognitive impairment: effects of disinhibition associated with schizophrenia in a cortical working memory model. Cereb Cortex. 2014;24:859–72.CrossRefGoogle Scholar
  39. Nawroth JC, Greer CA, Chen WR, Laughlin SB, Shepherd GM. An energy budget for the olfactory glomerulus. J Neurosci. 2007;27:9790–800. Available at: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.1415-07.2007CrossRefGoogle Scholar
  40. Niven JE, Laughlin SB. Energy limitation as a selective pressure on the evolution of sensory systems. J Exp Biol. 2008;211:1792–804. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18490395CrossRefGoogle Scholar
  41. Okun M, Lampl I. Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities. Nat Neurosci. 2008;11:535–7. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18376400CrossRefGoogle Scholar
  42. Olshausen BA, Field DJ. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature. 1996;381:607–9.  https://doi.org/10.1038/381607a0.CrossRefPubMedGoogle Scholar
  43. Perkel DH, Bullock TH. Neural coding: a report based on an NRP work session. Neurosci Res Progr Bull. 1968;6:219–349.Google Scholar
  44. Poil S-S, Hardstone R, Mansvelder HD, Linkenkaer-Hansen K. Critical-state dynamics of avalanches and oscillations jointly emerge from balanced excitation/inhibition in neuronal networks. J Neurosci. 2012;32:9817–23. Available at: http://www.jneurosci.org/content/32/29/9817.shortCrossRefGoogle Scholar
  45. Poo C, Isaacson JS. Odor representations in olfactory cortex: “sparse” coding, global inhibition, and oscillations. Neuron. 2009;62:850–61.  https://doi.org/10.1016/j.neuron.2009.05.022.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Renart A, de la Rocha J, Bartho P, Hollender L, Parga N, Reyes A, Harris KD. The asynchronous state in cortical circuits. Science. 2010;327:587–90.CrossRefGoogle Scholar
  47. Runyan CA, Schummers J, Van Wart A, Kuhlman SJ, Wilson NR, Huang ZJ, Sur M. Response features of parvalbumin-expressing interneurons suggest precise roles for subtypes of inhibition in visual cortex. Neuron. 2010;67:847–57.CrossRefGoogle Scholar
  48. Sengupta B, Laughlin SB, Niven JE. Balanced excitatory and inhibitory synaptic currents promote efficient coding and metabolic efficiency. PLoS Comput Biol. 2013;9(10):e1003263.CrossRefGoogle Scholar
  49. Shadlen MN, Newsome WT. Noise, neural codes and cortical organization. Curr Opin Neurobiol. 1994;4:569–79.CrossRefGoogle Scholar
  50. Shadlen MN, Newsome WT. The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci. 1998;18:3870–96. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9570816CrossRefGoogle Scholar
  51. Shew WL, Yang H, Petermann T, Roy R, Plenz D. Neuronal avalanches imply maximum dynamic range in cortical networks at criticality. J Neurosci. 2009;29:15595–600.CrossRefGoogle Scholar
  52. Shew WL, Yang H, Yu S, Roy R, Plenz D. Information capacity and transmission are maximized in balanced cortical networks with neuronal avalanches. J Neurosci. 2011;31:55–63. Available at: https://www.researchgate.net/publication/49731639_Information_Capacity_and_Transmission_Are_Maximized_in_Balanced_Cortical_Networks_with_Neuronal_AvalanchesCrossRefGoogle Scholar
  53. Shu Y, Hasenstaub A, Mccormick DA. Turning on and off recurrent balanced cortical activity. Nature. 2003;423:288–93.CrossRefGoogle Scholar
  54. Simoncelli EP, Olshausen BA. Natural image statistics and neural representation. Annu Rev Neurosci. 2001;2001:1193–216.CrossRefGoogle Scholar
  55. Tan AY, Zhang LI, Merzenich MM, Schreiner CE. Tone-evoked excitatory and inhibitory synaptic conductances of primary auditory cortex neurons. J Neurophysiol. 2004;92:630–43. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14999047CrossRefGoogle Scholar
  56. Tan AYY, Wehr M. Balanced tone-evoked synaptic excitation and inhibition in mouse auditory cortex. Neuroscience. 2009;163:1302–15.CrossRefGoogle Scholar
  57. Tan AYY, Brown BD, Scholl B, Mohanty D, Priebe NJ. Orientation selectivity of synaptic input to neurons in mouse and cat primary visual cortex. J Neurosci. 2011;31:12339–50.CrossRefGoogle Scholar
  58. van Rossum MCW, Turrigiano GG, Nelson SB. Fast propagation of firing rates through layered networks of noisy neurons. J Neurosci. 2002;22:1956–66.CrossRefGoogle Scholar
  59. van Vreeswijk C, Sompolinsky H. Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science. 1996;274:1724–6. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8939866CrossRefGoogle Scholar
  60. van Vreeswijk C, Sompolinsky H. Chaotic balanced state in a model of cortical circuits. Neural Comput. 1998;10:1321–71. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9698348CrossRefGoogle Scholar
  61. Vinje WE, Gallant JL. Sparse coding and decorrelation in primary visual cortex during natural vision. Science. 2000;287:1273–6.CrossRefGoogle Scholar
  62. Vogels TP, Abbott LF. Signal propagation and logic gating in networks of integrate-and-fire neurons. J Neurosci. 2005;25:10786–95. Available at: http://www.jneurosci.org/content/25/46/10786CrossRefGoogle Scholar
  63. Vogels TP, Abbott LF. Gating multiple signals through detailed balance of excitation and inhibition in spiking networks. Nat Neurosci. 2009;12:483–91. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19305402CrossRefGoogle Scholar
  64. Vogels TP, Sprekeler H, Zenke F, Clopath C, Gerstner W. Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks. Science. 2011;334:1569–73. Available at: http://science.sciencemag.org/content/334/6062/1569.abstractCrossRefGoogle Scholar
  65. Wehr MS, Zador AM. Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature. 2003;426:442–6. Available at: http://www.ncbi.nlm.nih.gov/pubmed/14647382CrossRefGoogle Scholar
  66. Wilent WB, Contreras D. Dynamics of excitation and inhibition underlying stimulus selectivity in rat somatosensory cortex. Nat Neurosci. 2005;8:1364–70.CrossRefGoogle Scholar
  67. Wolfe J, Houweling AR, Brecht M. Sparse and powerful cortical spikes. Curr Opin Neurobiol. 2010;20:306–12.  https://doi.org/10.1016/j.conb.2010.03.006.CrossRefPubMedGoogle Scholar
  68. Wu GK, Arbuckle R, Liu BH, Tao HW, Zhang LI. Lateral sharpening of cortical frequency tuning by approximately balanced inhibition. Neuron. 2008;58:132–43.CrossRefGoogle Scholar
  69. Xue M, Atallah BV, Scanziani M. Equalizing excitation-inhibition ratios across visual cortical neurons. Nature. 2014;511:596–600.  https://doi.org/10.1038/nature13321.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Yang H, Shew WL, Roy R, Plenz D. Maximal variability of phase synchrony in cortical networks with neuronal avalanches. J Neurosci. 2012;32:1061–72. Available at: http://www.jneurosci.org/content/32/3/1061.abstractCrossRefGoogle Scholar
  71. Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, O’Shea DJ, Sohal VS, Goshen I, Finkelstein J, Paz JT, Stehfest K, Fudim R, Ramakrishnan C, Huguenard JR, Hegemann P, Deisseroth K. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature. 2011;477:171–8.  https://doi.org/10.1038/nature10360.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Yu L, Zhang C, Liu L, Yu Y. Energy-efficient population coding constrains network size of a neuronal array system. Sci Rep. 2016;6:19369. Available at: http://www.nature.com/srep/2016/160119/srep19369/full/srep19369.htmlCrossRefGoogle Scholar
  73. Yu Y, Hill AP, Mccormick DA. Warm body temperature facilitates energy efficient cortical action potentials. PLoS Comput Biol. 2012;8:e1002456.CrossRefGoogle Scholar
  74. Yu Y, Mctavish TS, Hines ML, Shepherd GM, Valenti C, Migliore M. Sparse distributed representation of odors in a large-scale olfactory bulb circuit. PLoS Comput Biol. 2013;9:1–20.Google Scholar
  75. Yu Y, Migliore M, Hines ML, Shepherd GM. Sparse coding and lateral inhibition arising from balanced and unbalanced dendrodendritic excitation and inhibition. J Neurosci. 2014;34:13701–13. Available at: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.1834-14.2014CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Medical NeurobiologySchool of Life Science and Human Phenome Institute, Institutes of Brain Science, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan UniversityShanghaiChina

Personalised recommendations