Context-Dependent Adjustments in Executive Control of Goal-Directed Behaviour: Contribution of Frontal Brain Areas to Conflict-Induced Behavioural Adjustments in Primates

  • Farshad A. MansouriEmail author
  • Mark J. Buckley
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 21)


Psychophysical studies in humans indicate that the performance in various tasks is affected by contextual factors such as conflict level and error commission. It is generally believed that contextual factors influence the executive control processes and consequently modulate ongoing behaviour. Imaging studies suggest that dorsolateral prefrontal cortex and anterior cingulate cortex play crucial roles in mediating these context-dependent adjustments in executive control of behaviour. However, the underlying neuronal processes are to a great extent unknown. Recent studies in non-human primates indicate great similarities in conflict-induced behavioural adjustments between humans and macaque monkeys. Animal models have provided the opportunity to conduct various detailed neurobiological techniques to reveal the neural underpinning of conflict-induced behavioural modulations. In this chapter, we review the latest findings in humans and non-human primate models regarding the neural substrate and underlying mechanisms of conflict-dependent executive control adjustments.


Conflict detection Anterior cingulate cortex Prefrontal cortex Executive control Neuronal activity Cognitive flexibility Adaptive behaviour 


  1. Augustine JR. Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res Brain Res Rev. 1996;22(3):229–44.CrossRefGoogle Scholar
  2. Adleman NE, Menon V, Blasey CM, White CD, Warsofsky IS, Glover GH, Reiss AL. A developmental fMRI study of the stroop color-word task. NeuroImage 2001;16(1):61–75.CrossRefGoogle Scholar
  3. Banich MT, Milham MP, Jacobson BL, Webb A, Wszalek T, Cohen NJ, et al. Attentional selection and the processing of task-irrelevant information: insights from fMRI examinations of the Stroop task. Prog Brain Res. 2001;134:459–70.CrossRefGoogle Scholar
  4. Barch DM, Braver TS, Akbudak E, Conturo T, Ollinger J, Snyder A. Anterior cingulate cortex and response conflict: effects of response modality and processing domain. Cereb Cortex. 2001;11(9):837–48.CrossRefGoogle Scholar
  5. Bench CJ, Frith CD, Grasby PM, Friston KJ, Paulesu E, Frackowiak RSJ, Dolan RJ. Investigations of the functional anatomy of attention using the stroop test. Neuropsychologia 1993;31(9):907–922.CrossRefGoogle Scholar
  6. Botvinick MM, Cohen JD, Carter CS. Conflict monitoring and anterior cingulate cortex: an update. Trends Cogn Sci. 2004;8(12):539–46.CrossRefGoogle Scholar
  7. Braem S, King JA, Korb FM, Krebs RM, Notebaert W, Egner T. Affective modulation of cognitive control is determined by performance-contingency and mediated by ventromedial prefrontal and cingulate cortex. J Neurosci. 2013;33(43):16961–70.CrossRefGoogle Scholar
  8. Carter CS, van Veen V. Anterior cingulate cortex and conflict detection: an update of theory and data. Cogn Affect Behav Neurosci. 2007;7(4):367–79.CrossRefGoogle Scholar
  9. Casey BJ, Thomas KM, Welsh TF, Badgaiyan RD, Eccard CH, Jennings JR, et al. Dissociation of response conflict, attentional selection, and expectancy with functional magnetic resonance imaging. Proc Natl Acad Sci U S A. 2000;97(15):8728–33.CrossRefGoogle Scholar
  10. Cole MW, Yeung N, Freiwald WA, Botvinick M. Cingulate cortex: Diverging data from humans and monkeys. Trends Neurosci. 2009;32(11):566–574.CrossRefGoogle Scholar
  11. Cole MW, Yeung N, Freiwald WA, Botvinick M. Conflict over Cingulate cortex: Between-Species differences in cingulate may support enhanced cognitive flexibility in humans. Brain Behav Evol. 2010;75(4):239–240.CrossRefGoogle Scholar
  12. di Pellegrino G, Ciaramelli E, Ladavas E. The regulation of cognitive control following rostral anterior cingulate cortex lesion in humans. J Cogn Neurosci. 2007;19(2):275–86.CrossRefGoogle Scholar
  13. Davis KD, Taylor KS, Hutchison WD, Dostrovsky JO, Mcandrews MP, Richter EO, et al. Human anterior cingulate cortex neurons encode cognitive and emotional demands. J Neurosci. 2005;25(37):8402–6.CrossRefGoogle Scholar
  14. Derrfuss J, Brass M, Neumann J, von Cramon DY. Involvement of the inferior frontal junction in cognitive control: meta-analyses of switching and Stroop studies. Hum Brain Mapp. 2005;25(1):22–34.CrossRefGoogle Scholar
  15. Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RA, et al. Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci U S A. 2007;104(26):11073–8.CrossRefGoogle Scholar
  16. Durston S, Davidson MC, Thomas KM, Worden MS, Tottenham N, Martinez A, et al. Parametric manipulation of conflict and response competition using rapid mixed-trial event-related fMRI. NeuroImage. 2003;20(4):2135–41.CrossRefGoogle Scholar
  17. Ebitz RB, Platt ML. Neuronal activity in primate dorsal anterior cingulate cortex signals task conflict and predicts adjustments in pupil-linked arousal. Neuron. 2015;85(3):628–40.CrossRefGoogle Scholar
  18. Egner T. Congruency sequence effects and cognitive control. Cogn Affect Behav Neurosci. 2007;7(4):380–90.CrossRefGoogle Scholar
  19. Egner T, Hirsch J. Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information. Nat Neurosci. 2005a;8(12):1784–90.CrossRefGoogle Scholar
  20. Egner T, Hirsch J. The neural correlates and functional integration of cognitive control in a Stroop task. NeuroImage. 2005b;24(2):539–47.CrossRefGoogle Scholar
  21. Erickson KI, Milham MP, Colcombe SJ, Kramer AF, Banich MT, Webb A, et al. Behavioral conflict, anterior cingulate cortex, and experiment duration: implications of diverging data. Hum Brain Mapp. 2004;21(2):98–107.CrossRefGoogle Scholar
  22. Etkin A, Egner T, Kalisch R. Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn Sci. 2011;15(2):85–93.CrossRefGoogle Scholar
  23. Euston DR, Gruber AJ, Mcnaughton BL. The role of medial prefrontal cortex in memory and decision making. Neuron. 2012;76(6):1057–70.CrossRefGoogle Scholar
  24. Fan J, Flombaum JI, Mccandliss BD, Thomas KM, Posner MI. Cognitive and brain consequences of conflict. NeuroImage. 2003;18(1):42–57.CrossRefGoogle Scholar
  25. Fellows LK, Farah MJ. Is anterior cingulate cortex necessary for cognitive control? Brain. 2005;128:788–96.CrossRefGoogle Scholar
  26. Goldstein RZ, Volkow ND. Dysfunction of the prefrontal cortex in addiction: Neuroimaging findings and clinical implications. Nat Rev Neurosci. 2011;12(11):652–669.CrossRefGoogle Scholar
  27. Heilbronner SR, Hayden BY. Dorsal anterior cingulate cortex: a bottom-up view. Annu Rev Neurosci. 2016;39:149–70.CrossRefGoogle Scholar
  28. Ito S, Stuphorn V, Brown JW, Schall JD. Performance monitoring by the anterior cingulate cortex during saccade countermanding. Science. 2003;302(5642):120–2.CrossRefGoogle Scholar
  29. Kennerley SW, Walton ME, Behrens TE, Buckley MJ, Rushworth MF. Optimal decision making and the anterior cingulate cortex. Nat Neurosci. 2006;9(7):940–7.CrossRefGoogle Scholar
  30. Kennerley SW, Behrens TEJ, Wallis JD. Double dissociation of value computations in orbitofrontal and anterior cingulate neurons. Nat Neurosci. 2011;14(12):1581–U119.CrossRefGoogle Scholar
  31. Kerns JG, Cohen JD, Macdonald AW 3rd, Cho RY, Stenger VA, Carter CS. Anterior cingulate conflict monitoring and adjustments in control. Science. 2004;303(5660):1023–6.CrossRefGoogle Scholar
  32. Kolling N, Behrens T, Wittmann MK, Rushworth M. Multiple signals in anterior cingulate cortex. Curr Opin Neurobiol. 2016;37:36–43.CrossRefGoogle Scholar
  33. Krebs RM, Boehler CN, De Belder M, Egner T. Neural conflict-control mechanisms improve memory for target stimuli. Cereb Cortex. 2015;25(3):833–43.CrossRefGoogle Scholar
  34. Lauwereyns J, Koizumi M, Sakagami M, Hikosaka O, Kobayashi S, Tsutsui K. Interference from irrelevant features on visual discrimination by macaques (Macaca fuscata): a behavioral analogue of the human Stroop effect. J Exp Psychol Anim Behav Process. 2000;26(3):352–7.CrossRefGoogle Scholar
  35. Liston C, Matalon S, Hare TA, Davidson MC, Casey BJ. Anterior cingulate and posterior parietal cortices are sensitive to dissociable forms of conflict in a task-switching paradigm. Neuron. 2006;50(4):643–53.CrossRefGoogle Scholar
  36. Macleod CM. Half a century of research on the Stroop effect: an integrative review. Psychol Bull. 1991;109(2):163–203.CrossRefGoogle Scholar
  37. Mansouri FA, Buckley MJ, Tanaka K. Mnemonic function of the dorsolateral prefrontal cortex in conflict-induced behavioral adjustment. Science. 2007;318(5852):987–90.CrossRefGoogle Scholar
  38. Mansouri FA, Tanaka K, Buckley MJ. Conflict-induced behavioural adjustment: a clue to the executive functions of the prefrontal cortex. Nat Rev Neurosci. 2009;10(2):141–52.CrossRefGoogle Scholar
  39. Mansouri FA, Buckley MJ, Tanaka K. The essential role of primate orbitofrontal cortex in conflict-induced executive control adjustment. J Neurosci. 2014;34(33):11016–31.CrossRefGoogle Scholar
  40. Mansouri FA, Rosa MG, Atapour N. Working memory in the service of executive control functions. Front Syst Neurosci. 2015;9:166.CrossRefGoogle Scholar
  41. Michelet T, Bioulac B, Langbour N, Goillandeau M, Guehl D, Burbaud P. Electrophysiological correlates of a versatile executive control system in the monkey anterior cingulate cortex. Cereb Cortex. 2016;26(4):1684–97.CrossRefGoogle Scholar
  42. Milham MP, Banich MT, Claus ED, Cohen NJ. Practice-related effects demonstrate complementary roles of anterior cingulate and prefrontal cortices in attentional control. NeuroImage. 2003;18(2):483–93.CrossRefGoogle Scholar
  43. Mitchell RLC. The BOLD response during Stroop task-like inhibition paradigms: Effects of task difficulty and task-relevant modality. Brain Cogn. 2005;59(1):23–37.CrossRefGoogle Scholar
  44. Nakamura K, Roesch MR, Olson CR. Neuronal activity in macaque SEF and ACC during performance of tasks involving conflict. J Neurophysiol. 2005;93(2):884–908.CrossRefGoogle Scholar
  45. Nelson SM, Dosenbach NU, Cohen AL, Wheeler ME, Schlaggar BL, Petersen SE. Role of the anterior insula in task-level control and focal attention. Brain Struct Funct. 2010;214(5–6):669–80.CrossRefGoogle Scholar
  46. Paus T. Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nat Rev Neurosci. 2001;2(6):417–24.CrossRefGoogle Scholar
  47. Paus T, Koski L, Caramanos Z, Westbury C. Regional differences in the effects of task difficulty and motor output on blood flow response in the human anterior cingulate cortex: a review of 107 PET activation studies. Neuroreport. 1998;9(9):R37–47.CrossRefGoogle Scholar
  48. Posner MI, Rothbart MK. Attention, self-regulation and consciousness. Philos Trans R Soc Lond B Biol Sci. 1998;353(1377):1915–27.CrossRefGoogle Scholar
  49. Roelofs A, van Turennout M, Coles MGH. Anterior cingulate cortex activity can be independent of response conflict in Stroop-like tasks. Proc Natl Acad Sci U S A. 2006;103(37):13884–9.CrossRefGoogle Scholar
  50. Rushworth MF, Walton ME, Kennerley SW, Bannerman DM. Action sets and decisions in the medial frontal cortex. Trends Cogn Sci. 2004;8(9):410–7.CrossRefGoogle Scholar
  51. Schweizer TA, Oriet C, Meiran N, Alexander MP, Cusimano M, Stuss DT. The cerebellum mediates conflict resolution. J Cogn Neurosci. 2007;19(12):1974–82.CrossRefGoogle Scholar
  52. Shenhav A, Botvinick MM, Cohen JD. The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron. 2013;79(2):217–40.CrossRefGoogle Scholar
  53. Sheth SA, Mian MK, Patel SR, Asaad WF, Williams ZM, Dougherty DD, et al. Human dorsal anterior cingulate cortex neurons mediate ongoing behavioural adaptation. Nature. 2012;488(7410):218–21.CrossRefGoogle Scholar
  54. Stoet G, Snyder LH. Neural correlates of executive control functions in the monkey. Trends Cogn Sci. 2009;13(5):228–34.CrossRefGoogle Scholar
  55. Stuss DT, Floden D, Alexander MP, Levine B, Katz D. Stroop performance in focal lesion patients: dissociation of processes and frontal lobe lesion location. Neuropsychologia. 2001;39(8):771–86.CrossRefGoogle Scholar
  56. Sundermann B, Pfleiderer B. Functional connectivity profile of the human inferior frontal junction: involvement in a cognitive control network. BMC Neurosci. 2012;13:119.CrossRefGoogle Scholar
  57. Vendrell P, Junque C, Pujol J, Jurado MA, Molet J, Grafman J. The role of prefrontal regions in the Stroop task. Neuropsychologia. 1995;33(3):341–52.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Cognitive Neuroscience Laboratory, Department of PhysiologyMonash Biomedicine Discovery Institute, Monash UniversityClaytonAustralia
  2. 2.Department of Experimental PsychologyOxford UniversityOxfordUK

Personalised recommendations