Advertisement

Not Cure But Heal: Music and Medicine

  • Paulo E. Andrade
  • Joydeep BhattacharyaEmail author
Chapter
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 21)

Abstract

Do you know that our soul is composed of harmony?

Leonardo Da Vinci

Despite evidence for music-specific mechanisms at the level of pitch-pattern representations, the most fascinating aspect of music is its transmodality. Recent psychological and neuroscientific evidence suggest that music is unique in the coupling of perception, cognition, action and emotion. This potentially explains why music has been since time immemorial almost inextricably linked to healing processes and should continue to be.

Keywords

Music Memory Emotion Neuroplasticity Music Therapy 

References

  1. Alvin J. Music therapy. London: Hutchinson; 1975.Google Scholar
  2. Andrade PE. Uma abordagem evolucionária e neurocientífica da música. Neurociencias. 2004;1(1):21–33.Google Scholar
  3. Andrade PE, Bhattacharya J. Brain tuned to music. J R Soc Med. 2003;96(6):284–7.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Andrade PE, Bhattacharya J. Music: specialized to integrate? Empir Musicol Rev. 2014;9(3-4):183–92.CrossRefGoogle Scholar
  5. Anvari SH, Trainor LJ, Woodside J, Levy BA. Relations among musical skills, phonological processing, and early reading ability in preschool children. J Exp Child Psychol. 2002;83(2):111–30.PubMedCrossRefGoogle Scholar
  6. Barrera ME, Rykov MH, Doyle SL. The effects of interactive music therapy on hospitalized children with cancer: a pilot study. Psychooncology. 2002;11(5):379–88.PubMedCrossRefGoogle Scholar
  7. Bernatzky G, Presch M, Anderson M, Panksepp J. Emotional foundations of music as a non-pharmacological pain management tool in modern medicine. Neurosci Biobehav Rev. 2011;35(9):1989–99.  https://doi.org/10.1016/j.neubiorev.2011.CrossRefPubMedGoogle Scholar
  8. Bhattacharya J, Lee EJ. Modulation of EEG theta band signal complexity by music therapy. Int J Bifurcation Chaos. 2016;26:1650001.  https://doi.org/10.1142/S0218127416500012.CrossRefGoogle Scholar
  9. Bidelman GM, Krishnan A. Neural correlates of consonance, dissonance, and the hierarchy of musical pitch in the human brainstem. J Neurosci. 2009;29(42):13165–71.  https://doi.org/10.1523/JNEUROSCI.3900-09.2009.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Blacking J. How musical is man? Seattle: University of Washington Press; 1973.Google Scholar
  11. Blood AJ, Zatorre RJ. Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc Natl Acad Sci U S A. 2001;98(20):11818–23.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bonny HL. Music and healing. Music Ther. 1986;6(1):3–12.CrossRefGoogle Scholar
  13. Bradt J, Dileo C. Music therapy for end-of-life care. Cochrane Database Syst Rev. 2010;(1):CD007169.  https://doi.org/10.1002/14651858.CD007169.pub2. Review.
  14. Bradt J, Dileo C, Grocke D, Magill L. Music interventions for improving psychological and physical outcomes in cancer patients. Cochrane Database Syst Rev. 2011;(8):CD006911.  https://doi.org/10.1002/14651858.CD006911.pub2. Review.
  15. Bringman H, Giesecke K, Thörne A, Bringman S. Relaxing music as pre-medication before surgery: a randomised controlled trial. Acta Anaesthesiol Scand. 2009;53:759–64.PubMedCrossRefGoogle Scholar
  16. Brown S, Martinez MJ, Parsons LM. Passive music listening spontaneously engages limbic and paralimbic systems. Neuroreport. 2004;15(13):2033–7.PubMedCrossRefGoogle Scholar
  17. Bruscia KE. Standards of integrity for qualitative music therapy research. J Music Ther. 1998;35(3):176–200.PubMedCrossRefGoogle Scholar
  18. Bunt L, Stige B. Music therapy: an art beyond words. London: Routledge; 2014.CrossRefGoogle Scholar
  19. Castellano MA, Bharucha JJ, Krumhansl CL. Tonal hierarchies in the music of North India. J Exp Psychol Gen. 1984;113(3):394–412.PubMedCrossRefGoogle Scholar
  20. Cepeda MS, Carr DB, Lau J, Alvarez H. Music for pain relief. Cochrane Database Syst Rev. 2006;(2):CD004843.  https://doi.org/10.1002/14651858.CD004843.pub2.
  21. Chanda ML, Levitin DJ. The neurochemistry of music. Trends Cogn Sci. 2013;17(4):179–93.  https://doi.org/10.1016/j.tics.2013.02.007. Review.CrossRefPubMedGoogle Scholar
  22. Chen JL, Penhune VB, Zatorre RJ. Listening to musical rhythms recruits motor regions of the brain. Cereb Cortex. 2008;18(12):2844–54.  https://doi.org/10.1093/cercor/bhn042.CrossRefPubMedGoogle Scholar
  23. Conard NJ, Malina M, Münzel SC. New flutes document the earliest musical tradition in southwestern Germany. Nature. 2009;460(7256):737–40.  https://doi.org/10.1038/nature08169. Epub 2009 Jun 24.CrossRefPubMedGoogle Scholar
  24. Corriveau K, Pasquini E, Goswami U. Basic auditory processing skills and specific language impairment: a new look at an old hypothesis. J Speech Lang Hear Res. 2007;50(3):647–66.PubMedCrossRefGoogle Scholar
  25. Cousineau M, McDermott JH, Peretz I. The basis of musical consonance as revealed by congenital amusia. Proc Natl Acad Sci U S A. 2012;109(48):19858–63.  https://doi.org/10.1073/pnas.1207989109.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Cousineau M, Oxenham AJ, Peretz I. Congenital amusia: a cognitive disorder limited to resolved harmonics and with no peripheral basis. Neuropsychologia. 2015;66:293–301.  https://doi.org/10.1016/j.neuropsychologia.2014.11.031.CrossRefPubMedGoogle Scholar
  27. Cross I. Music, cognition, culture, and evolution. Ann N Y Acad Sci. 2001;930:28–42.PubMedCrossRefGoogle Scholar
  28. Dalla Bella S, Peretz I, Rousseau L, Gosselin N. A developmental study of the affective value of tempo and mode in music. Cognition. 2001;80(3):B1–10.PubMedCrossRefGoogle Scholar
  29. Dapretto M, Davies MS, Pfeifer JH, Scott AA, Sigman M, Bookheimer SY, Iacoboni M. Understanding emotions in others: mirror neuron dysfunction in children with autism spectrum disorders. Nat Neurosci. 2006;9(1):28–30.PubMedCrossRefGoogle Scholar
  30. Daveson BA. Music therapy and childhood cancer: goals, methods, patient choice and control during diagnosis, intensive treatment, transplant and palliative care. Music Ther Perspect. 2001;19(2):114–20.CrossRefGoogle Scholar
  31. Degé F, Schwarzer G. The effect of a music program on phonological awareness in preschoolers. Front Psychol. 2011;2:124.  https://doi.org/10.3389/fpsyg.2011.00124.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Dissanayake E. Antecedents of the temporal arts in early mother–infant interaction. In: Wallin NL, Merker B, Brown S, editors. The origins of music. Cambridge: The MIT Press; 2000. p. 389–410.Google Scholar
  33. Dissanayake E. Root, leaf, blossom, or bole: concerning the origin and adaptive function of music. In: Communicative musicality: exploring the basis of human companionship. New York: Oxford University Press; 2009. p. 17–30.Google Scholar
  34. Enard W. FOXP2 and the role of cortico-basal ganglia circuits in speech and language evolution. Curr Opin Neurobiol. 2011;21(3):415–24.  https://doi.org/10.1016/j.conb.2011.04.008.PubMedCrossRefGoogle Scholar
  35. Fedorenko E, Gibson E, Rohde D. The nature of working memory in linguistic, arithmetic and spatial integration processes. J Mem Lang. 2007;56:246–69.CrossRefGoogle Scholar
  36. Fedorenko E, Patel A, Casasanto D, Winawer J, Gibson E. Structural integration in language and music: evidence for a shared system. Mem Cogn. 2009;37(1):1–9.  https://doi.org/10.3758/MC.37.1.1.CrossRefGoogle Scholar
  37. Figuccio M, Andrade P, Andrade O, Gaab N. Music perceptual abilities predict reading and writing skills in young readers: a longitudinal study. Poster accepted to the Massachusetts Neuropsychological Society’s Annual Science Symposium, 2015.Google Scholar
  38. Fitch WT. The evolution of music in comparative perspective. Ann N Y Acad Sci. 2005;1060:29–49. Review.PubMedCrossRefGoogle Scholar
  39. Forgeard M, Winner E, Norton A, Schlaug G. Practicing a musical instrument in childhood is associated with enhanced verbal ability and nonverbal reasoning. PLoS One. 2008;3(10):e3566.  https://doi.org/10.1371/journal.pone.0003566.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Fritz T, Jentschke S, Gosselin N, Sammler D, Peretz I, Turner R, Friederici AD, Koelsch S. Universal recognition of three basic emotions in music. Curr Biol. 2009;19(7):573–6.  https://doi.org/10.1016/j.cub.2009.02.058.CrossRefPubMedGoogle Scholar
  41. Gold C, Wigram T, Elefant C. Music therapy for autistic spectrum disorder. Cochrane Database Syst Rev. 2006;(2):CD004381.  https://doi.org/10.1002/14651858.CD004381.pub2. Review.
  42. Goldstein A. Thrills in response to music and other stimuli. Physiol Psychol. 1980;8:126–9.CrossRefGoogle Scholar
  43. Gosselin N, Paquette S, Peretz I. Sensitivity to musical emotions in congenital amusia. Cortex. 2015;71:171–82.  https://doi.org/10.1016/j.cortex.2015.06.022.CrossRefPubMedGoogle Scholar
  44. Gosselin N, Peretz I, Noulhiane M, Hasboun D, Beckett C, Baulac M, Samson S. Impaired recognition of scary music following unilateral temporal lobe excision. Brain. 2005;128(Pt 3):628–40.PubMedCrossRefGoogle Scholar
  45. Goswami U, Thomson J, Richardson U, Stainthorp R, Hughes D, Rosen S, Scott SK. Amplitude envelope onsets and developmental dyslexia: a new hypothesis. Proc Natl Acad Sci U S A. 2002;99(16):10911–6.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Gouk P, editor. Musical healing in cultural contexts. Aldershot: Ashgate; 2000.Google Scholar
  47. Griffiths TD, Warren JD, Dean JL, Howard D. “When the feelings gone”: a selective loss of musical emotion. J Neurol Neurosurg Psychiatry. 2004;75:344–5.PubMedPubMedCentralGoogle Scholar
  48. Halpern AR, Zatorre RJ. When that tune runs through your head: a PET investigation of auditory imagery for familiar melodies. Cereb Cortex. 1999;9(7):697–704.PubMedCrossRefGoogle Scholar
  49. Hannon EE, Trainor LJ. Music acquisition: effects of enculturation and formal training on development. Trends Cogn Sci. 2007;11(11):466–72. Epub 2007 Nov 5. Review.PubMedCrossRefGoogle Scholar
  50. Hatem TP, Lira PI, Mattos SS. The therapeutic effects of music in children following cardiac surgery. J Pediatr. 2006;82(3):186–92.CrossRefGoogle Scholar
  51. Hillecke T, Nickel A, Bolay HV. Scientific perspectives on music therapy. Ann N Y Acad Sci. 2005;1060:271–82. Review.PubMedCrossRefGoogle Scholar
  52. Hilliard RE. Music therapy in hospice and palliative care: a review of the empirical data. Evid Based Complement Alternat Med. 2005;2(2):173–8.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Honing H, ten Cate C, Peretz I, Trehub SE. Without it no music: cognition, biology and evolution of musicality. Philos Trans R Soc Lond Ser B Biol Sci. 2015;370(1664):20140088.  https://doi.org/10.1098/rstb.2014.0088.CrossRefGoogle Scholar
  54. Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992;55(3):181–4.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Huron D. Sweet anticipation: music and the psychology of expectation. Cambridge: MIT Press; 2006.Google Scholar
  56. Hyde IH, Scalapino W. The influence of music upon electrocardiograms and blood pressure. Am J Phys. 1918;46(1):35–8.Google Scholar
  57. Janata P, Grafton ST. Swinging in the brain: shared neural substrates for behaviors related to sequencing and music. Nat Neurosci. 2003;6(7):682–7. Review.PubMedCrossRefGoogle Scholar
  58. Jankovic J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry. 2008;79(4):368–76.  https://doi.org/10.1136/jnnp.2007.131045. Review.CrossRefPubMedGoogle Scholar
  59. Juslin PN, Sloboda J, editors. Handbook of music and emotion: theory, research, applications. Oxford: Oxford University Press; 2011.Google Scholar
  60. Juslin PN, Västfjäll D. Emotional responses to music: the need to consider underlying mechanisms. Behav Brain Sci. 2008;31(5):559–75.PubMedGoogle Scholar
  61. Justus T, Hutsler JJ. Fundamental issues in the evolutionary psychology of music: assessing innateness and domain specificity. Music Percept. 2005;23:1–27.CrossRefGoogle Scholar
  62. Kain ZN, Caldwell-Andrews AA, Krivutza DM, Weinberg ME, Gaal D, Wang SM, Mayes LC. Interactive music therapy as a treatment for preoperative anxiety in children: a randomized controlled trial. Anesth Analg. 2004;98(5):1260–6.PubMedCrossRefGoogle Scholar
  63. Kessler EJ, Hansen C, Shepard RN. Tonal schemata in the perception of music in Bali and in the West. Music Percept. 1984;1:276–95.CrossRefGoogle Scholar
  64. Khalfa S, Isabelle P, Jean-Pierre B, Manon R. Event-related skin conductance responses to musical emotions in humans. Neurosci Lett. 2002;328(2):145–9.PubMedCrossRefGoogle Scholar
  65. Khalfa S, Roy M, Rainville P, Dalla Bella S, Peretz I. Role of tempo entrainment in psychophysiological differentiation of happy and sad music? Int J Psychophysiol. 2008;68(1):17–26.  https://doi.org/10.1016/j.ijpsycho.2007.12.001.CrossRefPubMedGoogle Scholar
  66. Kim J, Wigram T, Gold C. Emotional, motivational and interpersonal responsiveness of children with autism in improvisational music therapy. Autism. 2009;13(4):389–409.  https://doi.org/10.1177/1362361309105660.CrossRefPubMedGoogle Scholar
  67. Koelsch S. A neuroscientific perspective on music therapy. Ann N Y Acad Sci. 2009;1169:374–84.  https://doi.org/10.1111/j.1749-6632.2009.04592.x. Review.CrossRefPubMedGoogle Scholar
  68. Koelsch S. Towards a neural basis of music-evoked emotions. Trends Cogn Sci. 2010;14(3):131–7.  https://doi.org/10.1016/j.tics.2010.01.002.CrossRefPubMedGoogle Scholar
  69. Koelsch S. Toward a neural basis of music perception—a review and updated model. Front Psychol. 2011;2:110.  https://doi.org/10.3389/fpsyg.2011.00110.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Koelsch S. Brain and music. Chichester: Wiley-Blackwell; 2012.Google Scholar
  71. Koelsch S. Music-evoked emotions: principles, brain correlates, and implications for therapy. Ann N Y Acad Sci. 2015;1337:193–201.  https://doi.org/10.1111/nyas.12684.CrossRefPubMedGoogle Scholar
  72. Kraus N, Skoe E, Parbery-Clark A, Ashley R. Experience-induced malleability in neural encoding of pitch, timbre, and timing. Ann N Y Acad Sci. 2009;1169:543–57.  https://doi.org/10.1111/j.1749-6632.2009.04549.x.Review.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Krumhansl CL. An exploratory study of musical emotions and psychophysiology. Can J Exp Psychol. 1997;51(4):336–53.PubMedCrossRefGoogle Scholar
  74. Krumhansl CL, Cuddy LL. A theory of tonal hierarchies in music. Music Percept. 2010;36:51–87.CrossRefGoogle Scholar
  75. Krumhansl CL, Shepard RN. Quantification of the hierarchy of tonal functions within a diatonic context. J Exp Psychol Hum Percept Perform. 1979;5(4):579–94.PubMedCrossRefGoogle Scholar
  76. Krumhansl CL, Toivanen P, Eerola T, Toiviainen P, Järvinen T, Louhivuori J. Cross-cultural music cognition: cognitive methodology applied to North Sami yoiks. Cognition. 2000;76(1):13–58.PubMedCrossRefGoogle Scholar
  77. Kuhl PK. Early language acquisition: cracking the speech code. Nat Rev Neurosci. 2004;5(11):831–43. Review.PubMedCrossRefGoogle Scholar
  78. Lane RD, Reiman EM, Bradley MM, Lang PJ, Ahern GL, Davidson RJ, Schwartz GE. Neuroanatomical correlates of pleasant and unpleasant emotion. Neuropsychologia. 1997;35(11):1437–44.PubMedCrossRefGoogle Scholar
  79. Laukka P, Eerola T, Thingujam NS, Yamasaki T, Beller G. Universal and culture-specific factors in the recognition and performance of musical affect expressions. Emotion. 2013;13(3):434–49.  https://doi.org/10.1037/a0031388.CrossRefPubMedGoogle Scholar
  80. Lee EJ, Bhattacharya J, Sohn C, Verres R. Monochord sounds and progressive muscle relaxation reduce anxiety and improve relaxation during chemotherapy: a pilot EEG study. Complement Ther Med. 2012;20(6):409–16.  https://doi.org/10.1016/j.ctim.2012.07.002.CrossRefPubMedGoogle Scholar
  81. Levitin DJ, Tirovolas AK. Current advances in the cognitive neuroscience of music. Ann N Y Acad Sci. 2009;1156:211–31.  https://doi.org/10.1111/j.1749-6632.2009.04417.x.CrossRefPubMedGoogle Scholar
  82. Magee W, Stewart L. The challenges and benefits of a genuine partnership between music therapy and neuroscience: a dialog between scientist and therapist. Front Hum Neurosci. 2015;9:223.PubMedPubMedCentralCrossRefGoogle Scholar
  83. McDermott JH. The evolution of music. Nature. 2008;453(7193):287–8.  https://doi.org/10.1038/453287a.CrossRefPubMedGoogle Scholar
  84. McDermott JH, Hauser M. The origins of music: innateness, uniqueness, and evolution. Music Percept. 2005;23:29–59.CrossRefGoogle Scholar
  85. McDermott JH, Schultz AF, Undurraga EA, Godoy RA. Indifference to dissonance in native Amazonians reveals cultural variations in music perception. Nature. 2016.  https://doi.org/10.1038/nature18635.PubMedCrossRefGoogle Scholar
  86. Meister IG, Krings T, Foltys H, Boroojerdi B, Müller M, Töpper R, Thron A. Playing piano in the mind—an fMRI study on music imagery and performance in pianists. Brain Res Cogn Brain Res. 2004;19(3):219–28.PubMedCrossRefGoogle Scholar
  87. Menon V, Levitin DJ. The rewards of music listening: response and physiological connectivity of the mesolimbic system. NeuroImage. 2005;28(1):175–84.PubMedCrossRefGoogle Scholar
  88. Merker B, Morley I, Zuidema W. Five fundamental constraints on theories of the origins of music. Philos Trans R Soc Lond Ser B Biol Sci. 2015;370(1664):20140095.  https://doi.org/10.1098/rstb.2014.0095.Review.CrossRefGoogle Scholar
  89. Merrett DL, Peretz I, Wilson SJ. Moderating variables of music training-induced neuroplasticity: a review and discussion. Front Psychol. 2013;4:606.  https://doi.org/10.3389/fpsyg.2013.00606.Review.CrossRefPubMedPubMedCentralGoogle Scholar
  90. Merriam A. The anthropology of music. Evanston: Northwestern University Press; 1964.Google Scholar
  91. Mesulam MM. From sensation to cognition. Brain. 1998;121(Pt 6):1013–52. Review.PubMedCrossRefGoogle Scholar
  92. Mithen S. The singing Neanderthals: the origins of music, language, mind, and body. Cambridge: Harvard University Press; 2006.Google Scholar
  93. Moreno S, Bialystok E, Barac R, Schellenberg EG, Cepeda NJ, Chau T. Short-term music training enhances verbal intelligence and executive function. Psychol Sci. 2011;22(11):1425–33.  https://doi.org/10.1177/0956797611416999.CrossRefPubMedPubMedCentralGoogle Scholar
  94. Nam U. Pitch distribution in Korean court music. Evidence consistent with tonal hierarchies. Music Percept. 1998;16(2):243–7.CrossRefGoogle Scholar
  95. Nilsson U. Soothing music can increase oxytocin levels during bed rest after open-heart surgery: a randomised control trial. J Clin Nurs. 2009;18(15):2153–61.  https://doi.org/10.1111/j.1365-2702.2008.02718.x.CrossRefPubMedGoogle Scholar
  96. O’Kelly J. Music therapy and neuroscience: opportunities and challenges. Voices. 2016;16(2):1–22.Google Scholar
  97. Ohnishi T, Matsuda H, Asada T, Aruga M, Hirakata M, Nishikawa M, Katoh A, Imabayashi E. Functional anatomy of musical perception in musicians. Cereb Cortex. 2001;11(8):754–60.PubMedCrossRefGoogle Scholar
  98. Overy K. Dyslexia and Music. From timing deficits to musical intervention. Ann N Y Acad Sci. 2003; 999:497-505. ReviewPubMedCrossRefGoogle Scholar
  99. Overy K, Molnar-Szakacs I. Being together in time: musical experience and the mirror neuron system. Music Percept. 2009;26:489–504.CrossRefGoogle Scholar
  100. Panksepp J. The emotional source of “chills” induced by music. Music Percept. 1995;13:171–207.CrossRefGoogle Scholar
  101. Panksepp J, Bernatzky G. Emotional sounds and the brain: the neuro-affective foundations of musical appreciation. Behav Process. 2002;60(2):133–55.CrossRefGoogle Scholar
  102. Papousek H. Musicality in infancy research: biological and cultural origins of early musicality. In: Deliège I, Sloboda J, editors. Musical beginnings. Oxford: Oxford University Press; 1996a. p. 37–55.Google Scholar
  103. Papousek M. Intuitive parenting: a hidden source of musical stimulation in infancy. In: Deliège I, Sloboda J, editors. Musical beginnings. Oxford: Oxford University Press; 1996b.Google Scholar
  104. Patel AD. In: Bailar M, editor. Music, biological evolution, and the brain. Emerging disciplines. Houston: Rice University Press; 2010.Google Scholar
  105. Patel AD, Foxton JM, Griffiths TD. Musically tone-deaf individuals have difficulty discriminating intonation contours extracted from speech. Brain Cogn. 2005;59(3):310–3.PubMedCrossRefGoogle Scholar
  106. Perani D, Saccuman MC, Scifo P, Spada D, Andreolli G, Rovelli R, Baldoli C, Koelsch S. Functional specializations for music processing in the human newborn brain. Proc Natl Acad Sci U S A. 2010;107(10):4758–63.  https://doi.org/10.1073/pnas.0909074107.CrossRefPubMedPubMedCentralGoogle Scholar
  107. Pinel JP. Biopsychology. 8th ed. Boston: Allyn & Bacon; 2011.Google Scholar
  108. Pinker S. How the mind works. New York: Norton; 1997.Google Scholar
  109. Plantinga J, Trehub SE. Revisiting the innate preference for consonance. J Exp Psychol Hum Percept Perform. 2014;40(1):40–9.  https://doi.org/10.1037/a0033471.CrossRefPubMedGoogle Scholar
  110. Platel H, Price C, Baron JC, Wise R, Lambert J, Frackowiak RS, Lechevalier B, Eustache F. The structural components of music perception. A functional anatomical study. Brain. 1997;120(Pt 2):229–43.PubMedCrossRefGoogle Scholar
  111. Pyati S, Gan TJ. Perioperative pain management. CNS Drugs. 2007;21(3):185–211. Review.PubMedCrossRefGoogle Scholar
  112. Ramachandran VS, Hirstein W. The science of art: a neurological theory of aesthetic experience. J Conscious Stud. 1999;6(6-7):15–51.Google Scholar
  113. Register D, Darrow AA, Standley J, Swedberg O. The use of music to enhance reading skills of second grade students and students with reading disabilities. J Music Ther. 2007;44(1):23–37.PubMedCrossRefGoogle Scholar
  114. Repp BH, Su YH. Sensorimotor synchronization: a review of recent research (2006-2012). Psychon Bull Rev. 2013;20(3):403–52.  https://doi.org/10.3758/s13423-012-0371-2.Review.CrossRefPubMedGoogle Scholar
  115. Ribeiro FS, Santos FHD. Musical training and working memory span in beginners, veterans and with no musical knowledge children. Psicologia. 2012;25(3):559–67.Google Scholar
  116. Richardson MM, Babiak-Vazquez AE, Frenkel MA. Music therapy in a comprehensive cancer center. J Soc Integr Oncol. 2008;6(2):76–81. Review.PubMedGoogle Scholar
  117. Rickson DJ. Instructional and improvisational models of music therapy with adolescents who have attention deficit hyperactivity disorder (ADHD): a comparison of the effects on motor impulsivity. J Music Ther. 2006;43(1):39–62.PubMedCrossRefGoogle Scholar
  118. Roy M, Peretz I, Rainville P. Emotional valence contributes to music-induced analgesia. Pain. 2008;134(1-2):140–7.PubMedCrossRefGoogle Scholar
  119. Sakai K, Hikosaka O, Miyauchi S, Takino R, Tamada T, Iwata NK, Nielsen M. Neural representation of a rhythm depends on its interval ratio. J Neurosci. 1999;19(22):10074–81.PubMedCrossRefGoogle Scholar
  120. Salimpoor VN, Benovoy M, Larcher K, Dagher A, Zatorre RJ. Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nat Neurosci. 2011;14:257–62.PubMedCrossRefGoogle Scholar
  121. Sammler D, Grigutsch M, Fritz T, Koelsch S. Music and emotion: electrophysiological correlates of the processing of pleasant and unpleasant music. Psychophysiology. 2007;44(2):293–304.PubMedCrossRefGoogle Scholar
  122. Schellenberg EG. Music lessons enhance IQ. Psychol Sci. 2004;15(8):511–4.PubMedCrossRefGoogle Scholar
  123. Schön D, Magne C, Besson M. The music of speech: music training facilitates pitch processing in both music and language. Psychophysiology. 2004;41(3):341–9.PubMedCrossRefGoogle Scholar
  124. Seltzer LJ, Ziegler TE, Pollak SD. Social vocalizations can release oxytocin in humans. Proc Biol Sci. 2010;277(1694):2661–6.  https://doi.org/10.1098/rspb.2010.0567.CrossRefPubMedPubMedCentralGoogle Scholar
  125. Shannon K. Neurologic music therapy: a scientific paradigm for clinical practice. Music Med. 2010;2(2):78–84.CrossRefGoogle Scholar
  126. Shepherd G. Neurobiology. Oxford: Oxford University Press; 1994.Google Scholar
  127. Siedliecki SL, Good M. Effect of music on power, pain, depression and disability. J Adv Nurs. 2006;54(5):553–62.PubMedCrossRefGoogle Scholar
  128. Srinivasan SM, Bhat AN. A review of “music and movement” therapies for children with autism: embodied interventions for multisystem development. Front Integr Neurosci. 2013;7:22.  https://doi.org/10.3389/fnint.2013.00022.CrossRefPubMedPubMedCentralGoogle Scholar
  129. Strait DL, Parbery-Clark A, Hittner E, Kraus N. Musical training during early childhood enhances the neural encoding of speech in noise. Brain Lang. 2012;123(3):191–201.  https://doi.org/10.1016/j.bandl.2012.09.001.CrossRefPubMedPubMedCentralGoogle Scholar
  130. Tallal P, Gaab N. Dynamic auditory processing, musical experience and language development. Trends Neurosci. 2006;29(7):382–90. Epub 2006 Jun 27. Review.PubMedCrossRefGoogle Scholar
  131. Teki S, Grube M, Kumar S, Griffiths TD. Distinct neural substrates of duration-based and beat-based auditory timing. J Neurosci. 2011;31(10):3805–12.  https://doi.org/10.1523/JNEUROSCI.5561-10.2011.CrossRefPubMedPubMedCentralGoogle Scholar
  132. Thaut MH. Rhythm, music, and the brain: scientific foundations and clinical applications. New York: Taylor & Francis; 2005.Google Scholar
  133. Thaut MH, Abiru M. Rhythmic auditory stimulation in rehabilitation of movement disorders: a review of current research. Music Percept. 2010;27:263–9.CrossRefGoogle Scholar
  134. Thaut MH, McIntosh GC, Rice RR. Rhythmic facilitation of gait training in hemiparetic stroke rehabilitation. J Neurol Sci. 1997;151(2):207–12.PubMedCrossRefGoogle Scholar
  135. Thompson WF, Cuddy LL, Plaus C. Expectancies generated by melodic intervals: evaluation of principles of melodic implication in a melody-completion task. Percept Psychophys. 1997;59(7):1069–76.PubMedCrossRefGoogle Scholar
  136. Tierney A, Kraus N. Music training for the development of reading skills. Prog Brain Res. 2013;207:209–41.  https://doi.org/10.1016/B978-0-444-63327-9.00008-4.Review.CrossRefPubMedGoogle Scholar
  137. Trainor LJ. The origins of music in auditory scene analysis and the roles of evolution and culture in musical creation. Philos Trans R Soc Lond Ser B Biol Sci. 2015;370(1664):20140089.  https://doi.org/10.1098/rstb.2014.0089.CrossRefGoogle Scholar
  138. Tramo MJ, Cariani PA, Delgutte B, Braida LD. Neurobiological foundations for the theory of harmony in western tonal music. Ann N Y Acad Sci. 2001;930:92–116. Review.PubMedCrossRefGoogle Scholar
  139. Trehub SE. The developmental origins of musicality. Nat Neurosci. 2003;6(7):669–73. Review.PubMedCrossRefGoogle Scholar
  140. Treurnicht Naylor K, Kingsnorth S, Lamont A, McKeever P, Macarthur C. The effectiveness of music in pediatric healthcare: a systematic review of randomized controlled trials. Evid Based Complement Alternat Med. 2011;2011:464759.  https://doi.org/10.1155/2011/464759.CrossRefPubMedGoogle Scholar
  141. Trevarthen C. Musicality and the intrinsic motive pulse: evidence from human psychobiology and infant communication. Music Sci. 1999;3:155–215.CrossRefGoogle Scholar
  142. Trevarthen C. Autism as a neurodevelopmental disorder affecting communication and learning in early childhood: prenatal origins, post-natal course and effective educational support. Prostaglandins Leukot Essent Fatty Acids. 2000;63(1-2):41–6. Review.PubMedCrossRefGoogle Scholar
  143. Umemura M, Honda K. Influence of music on heart rate variability and comfort—a consideration through comparison of music and noise. J Hum Ergol (Tokyo). 1998;27(1-2):30–8.Google Scholar
  144. Vieillard S, Peretz I, Gosselin N, Khalfa S, Gagnon L, Bouchard B. Happy, sad, scary and peaceful musical excerpts for research on emotions. Cognit Emot. 2008;22(4):720–52.CrossRefGoogle Scholar
  145. Virtala P, Tervaniemi M. Neurocognition of major-minor and consonance-dissonance. Music Percept. 2017;34(4):387–404.CrossRefGoogle Scholar
  146. Wallin NL, Merker B. The origins of music. Cambridge: MIT Press; 2001.Google Scholar
  147. Wheeler BL, editor. Music therapy handbook. New York: Guilford Press; 2016.Google Scholar
  148. Wise RA. Roles for nigrostriatal—not just mesocorticolimbic—dopamine in reward and addiction. Trends Neurosci. 2009;32(10):517–24.  https://doi.org/10.1016/j.tins.2009.06.004.CrossRefPubMedPubMedCentralGoogle Scholar
  149. Zatorre R. Music, the food of neuroscience? Nature. 2005;434(7031):312–5.PubMedCrossRefGoogle Scholar
  150. Zatorre RJ, Chen JL, Penhune VB. When the brain plays music: auditory-motor interactions in music perception and production. Nat Rev Neurosci. 2007;8(7):547–58. Review.PubMedCrossRefGoogle Scholar
  151. Zatorre RJ, Evans AC, Meyer E. Neural mechanisms underlying melodic perception and memory for pitch. J Neurosci. 1994;14(4):1908–19.PubMedCrossRefGoogle Scholar
  152. Zatorre RJ, Perry DW, Beckett CA, Westbury CF, Evans AC. Functional anatomy of musical processing in listeners with absolute pitch and relative pitch. Proc Natl Acad Sci U S A. 1998;95(6):3172–7.PubMedPubMedCentralCrossRefGoogle Scholar
  153. Zatorre RJ, Salimpoor VN. From perception to pleasure: music and its neural substrates. Proc Natl Acad Sci U S A. 2013;110:10430–7.PubMedPubMedCentralCrossRefGoogle Scholar
  154. Zioga I, Di Bernardi Luft C, Bhattacharya J. Musical training shapes neural responses to melodic and prosodic expectations. Brain Res. 2016;1650:267–82.PubMedPubMedCentralCrossRefGoogle Scholar
  155. Zuk J, Andrade PE, Andrade OV, Gardiner M, Gaab N. Musical, language, and reading abilities in early Portuguese readers. Front Psychol. 2013;4:288.  https://doi.org/10.3389/fpsyg.2013.00288.CrossRefPubMedPubMedCentralGoogle Scholar
  156. Zuk J, Benjamin C, Kenyon A, Gaab N. Behavioral and neural correlates of executive functioning in musicians and non-musicians. PLoS One. 2014;9(6):e99868.  https://doi.org/10.1371/journal.pone.0099868.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Psychology, GoldsmithsUniversity of LondonLondonUK

Personalised recommendations