Skip to main content

Neuronal Bases of Systemic Organization of Behavior

  • Chapter
  • First Online:
Book cover Systems Neuroscience

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 21))

Abstract

Despite the years of studies in the field of systems neuroscience, functions of neural circuits and behavior-related systems are still not entirely clear. The systems description of brain activity has recently been associated with cognitive concepts, e.g. a cognitive map, reconstructed via place-cell activity analysis and the like, and a cognitive schema, modeled in consolidation research. The issue we find of importance is that a cognitive unit reconstructed in neuroscience research is mainly formulated in terms of environment. In other words, the individual experience is considered as a model or reflection of the outside world and usually lacks a biological meaning, such as describing a given part of the world for the individual. In this chapter, we present the idea of a cognitive component that serves as a model of behavioral interaction with environment, rather than a model of the environment itself. This intangible difference entails the need in substantial revision of several well-known phenomena, including the long-term potentiation.

The principal questions developed here are how the cognitive units appear and change upon learning and performance, and how the links between them create the whole structure of individual experience. We argue that a clear distinction between processes that provide the emergence of new components and those underlying the retrieval and/or changes in the existing ones is necessary in learning and memory research. We then describe a view on learning and corresponding neuronal activity analysis that may help set this distinction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

IEG:

Immediate early gene

RSC:

Retrosplenial cortex

TFS:

Theory of Functional Systems

LTP:

Long-term potentiation

References

  • Abdou K, Shehata M, Choko K, Nishizono H, Matsuo M, Muramatsu SI, Inokuchi K. Synapse-specific representation of the identity of overlapping memory engrams. Science. 2018;360(6394):1227–31

    Article  CAS  Google Scholar 

  • Adams NE, Sherfey JS, Kopell NJ, Whittington MA, Lebeau FE. Hetereogeneity in neuronal intrinsic properties: a possible mechanism for hub-like properties of the rat anterior cingulate cortex during network activity. eNeuro. 2017;4(1):ENEURO-0313.

    Google Scholar 

  • Aggleton JP, Brown MW, Albasser MM. Contrasting brain activity patterns for item recognition memory and associative recognition memory: insights from immediate-early gene functional imaging. Neuropsychologia. 2012;50(13):3141–55. https://doi.org/10.1016/j.neuropsychologia.2012.05.018.

    Article  PubMed  Google Scholar 

  • Aleksandrov YI. Learning and memory: traditional and systems approaches. Neurosci Behav Physiol. 2006;36(9):969–85.

    Article  Google Scholar 

  • Alexandrov YI. How we fragment the world: the view from inside versus the view from outside. Soc Sci Inf. 2008;47:419–57.

    Article  Google Scholar 

  • Alexandrov YI. Cognition as systemogenesis. In: Nadin M, editor. Anticipation: learning from the past. Cognitive systems monographs, vol. 25. Cham: Springer; 2015. p. 193–220.

    Chapter  Google Scholar 

  • Alexandrov YI, Alexandrov IO. Specificity of visual and motor cortex neurons activity in behavior. Acta Neurobiol Exp. 1982;42:457–68.

    CAS  Google Scholar 

  • Alexandrov YI, Sams M. Emotion and consciousness: ends of a continuity. Cogn Brain Res. 2005;25(2):387–405.

    Article  Google Scholar 

  • Alexandrov YI, Grinchenko YV, Laukka S, Jarvilehto T, Maz VN, Svetlaev IA. Acute effect of ethanol on the pattern of behavioral specialization of neurons in the limbic cortex of the freely moving rabbit. Acta Physiol Scand. 1990;140:257–68.

    Article  Google Scholar 

  • Alexandrov YI, Grinchenko YV, Laukka S, Jarvilehto T, Matz VN. Acute effects of alcohol on unit activity in the motor cortex of freely moving rabbits: comparison with the limbic cortex. Acta Physiol Scand. 1991;142:429–35.

    Article  CAS  Google Scholar 

  • Alexandrov YI, Grinchenko YV, Laukka S, Jarvilehto T, Maz VN, Korpusova AV. Effect of ethanol on hippocampal neurons depends on their behavioral specialization. Acta Physiol Scand. 1993;149:429–35.

    Article  Google Scholar 

  • Alexandrov YI, Grechenko TN, Gavrilov VV, et al. Formation and realization of individual experience: a psychophysiological approach. In: Miller R, Ivanitsky AM, Balaban PM, editors. Conceptual advances in brain research. Vol. 2. Conceptual advances in Russian neuroscience: complex brain functions. Amsterdam: Harwood Academic Publishers; 2000. p. 181–200.

    Google Scholar 

  • Alexandrov YI, Grinchenko YV, Shevchenko DG, Averkin RG, Matz VN, Laukka S, Korpusova AV. A subset of cingulate cortical neurons is specifically activated during alcohol-acquisition behavior. Acta Physiol Scand. 2001;171:87–97.

    CAS  PubMed  Google Scholar 

  • Alexandrov YI, Grinchenko YV, Shevchenko DG, Averkin RG, Matz VN, Laukka S, Sams M. The effect of ethanol on the neuronal subserving of behavior in the hippocampus. J Behav Brain Sci. 2013;3:107–30.

    Article  CAS  Google Scholar 

  • Allsopp TE, Fazakerley JK. Altruistic cell suicide and the specialized case of the virus-infected nervous system. Trends Neurosci. 2000;23:284–90.

    Article  CAS  Google Scholar 

  • Ambrogini P, Orsini L, Mancini C, Ferri P, Ciaroni S, Cuppini R. Learning may reduce neurogenesis in adult rat dentate gyrus. Neurosci Lett. 2004;359:13–6.

    Article  CAS  Google Scholar 

  • Anacker C, Hen R. Adult hippocampal neurogenesis and cognitive flexibility—linking memory and mood. Nat Rev Neurosci. 2017;18(6):335–46.

    Article  CAS  Google Scholar 

  • Anokhin KV, Rose SP. Learning-induced increase of immediate early gene messenger RNA in the chick forebrain. Eur J Neurosci. 1991;3(2):162–7.

    Article  Google Scholar 

  • Anokhin KV, Sudakov KV. Genome of brain neurons in organization of systemic mechanisms of behavior. Bull Exp Biol Med. 2003;135(2):107–13.

    Article  CAS  Google Scholar 

  • Anokhin KV, Tiunova AA, Rose SPR. Reminder effects -reconsolidation or retrieval deficit? Pharmacological dissection with protein synthesis inhibitors following reminder for a passive-avoidance task in young chicks. Eur J Neurosci. 2002;15:1759–65.

    Article  Google Scholar 

  • Anokhin PK. Biology and neurophysiology of the conditioned reflex and its role in adaptive behavior. New York: Pergamon Press; 1974.

    Google Scholar 

  • Barry DN, Commins S. Imaging spatial learning in the brain using immediate early genes: insights, opportunities and limitations. Rev Neurosci. 2011;22:131–42. https://doi.org/10.1515/RNS.2011.019.

    Article  CAS  PubMed  Google Scholar 

  • Bartlett FC. Remembering: a study in experimental and social psychology. New York: Cambridge University Press; 1995.

    Book  Google Scholar 

  • Bonner JT. The evolution of complexity by means of natural selection. Princeton, NJ: Princeton University Press; 1988.

    Google Scholar 

  • Brecht M, Scneider M, Manns ID. Silent neurons in sensorimotor cortices: implication for cortical plasticity. In: Ebner FF, editor. Neural plasticity in adult somatic sensory-motor systems. Boca Raton: Taylor & Francis Group, LLC; 2005. p. 1–19.

    Google Scholar 

  • Buitrago MM, Ringer T, Schulz JB, Dichgans J, Luft AR. Characterization of motor skill and instrumental learning time scales in a skilled reaching task in rat. Behav Brain Res. 2004;155:249–56.

    Article  Google Scholar 

  • Bunge MA. Causality: the place of the causal principle in modern science. Cambridge: Harvard University Press; 1963.

    Google Scholar 

  • Burgess N, O’Keefe J. Models of place and grid cell firing and theta rhythmicity. Curr Opin Neurobiol. 2011;21(5):734–44. https://doi.org/10.1016/j.conb.2011.07.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cacioppo JT, Gardner WL. Emotion. Annu Rev Psychol. 1999;50:191–214.

    Article  CAS  Google Scholar 

  • Carleton A, Petreanu LT, Lansford L, Lledo P-M. Becoming a new neuron in the adult olfactory bulb. Nat Neurosci. 2003;6:507–18.

    Article  CAS  Google Scholar 

  • Changeux JP, Connes A. Conversations on mind, matter, and mathematics. Princeton, NJ: Princeton University Press; 1999.

    Google Scholar 

  • Chestek CA, Batista AP, Santhanam G, Yu BM, Afshar A, Cunningham JP, Gilja V, Ryu SI, Churchland MM, Shenoy KV. Single-neuron stability during repeated reaching in macaque premotor cortex. J Neurosci. 2007;27:10742–50.

    Article  CAS  Google Scholar 

  • Cisek PI, Kalaska JF. Neural mechanisms for interacting with a world full of action choices. Annu Rev Neurosci. 2010;33:269–98. https://doi.org/10.1146/annurev.neuro.051508.135409.

    Article  CAS  PubMed  Google Scholar 

  • Clayton DF. The genomic action potential. Neurobiol Learn Mem. 2000;74:185–216.

    Article  CAS  Google Scholar 

  • Davis S, Renaudineau S, Poirier R, Poucet B, Save E, Laroche S. The formation and stability of recognition memory: what happens upon recall? Front Behav Neurosci. 2010;4:177. https://doi.org/10.3389/fnbeh.2010.00177.

    Article  PubMed  PubMed Central  Google Scholar 

  • Defelipe J. The evolution of the brain, the human nature of cortical circuits, and intellectual creativity. Front Neuroanat. 2011;5:29. https://doi.org/10.3389/fnana.2011.00029.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dudai Y. Memory from a to Z. Keywords, concepts and beyond. Oxford: Oxford University Press; 2002.

    Google Scholar 

  • Dudai Y. The restless engram consolidations never end. Annu Rev Neurosci. 2012;35:227–47. https://doi.org/10.1146/annurev-neuro-062111-150500.

    Article  CAS  PubMed  Google Scholar 

  • Dudai Y, Eisenberg M. Rites of passage of the engram: reconsolidation and the lingering consolidation hypothesis. Neuron. 2004;44:93–100.

    Article  CAS  Google Scholar 

  • Dudai Y, Karni A, Born J. The consolidation and transformation of memory. Neuron. 2015;88(1):20–32. https://doi.org/10.1016/j.neuron.2015.09.004.

    Article  CAS  PubMed  Google Scholar 

  • Edelman GM. Neural Darwinism: the theory of neural group selection. New York: Basic Books; 1987.

    Google Scholar 

  • Einarsson EO, Nader K. Involvement of the anterior cingulate cortex in formation, consolidation, and reconsolidation of recent and remote contextual fear memory. Learn Mem. 2012;19:449–52. https://doi.org/10.1101/lm.027227.112.

    Article  PubMed  Google Scholar 

  • Engel AK, Fries P, Singer W. Dynamic predictions: oscillations and synchrony in top–down processing. Nat Rev Neurosci. 2001;2(10):704–16. https://doi.org/10.1038/35094565.

    Article  CAS  PubMed  Google Scholar 

  • Erickson CA, Desimone R. Responses of macaque perirhinal neurons during and after visual stimulus association learning. J Neurosci. 1999;19:10404–16.

    Article  CAS  Google Scholar 

  • Feld GB, Born J. Sculpting memory during sleep: concurrent consolidation and forgetting. Curr Opin Neurobiol. 2017;44:20–7. https://doi.org/10.1016/j.conb.2017.02.012.

    Article  CAS  PubMed  Google Scholar 

  • Fodor J. Against darwinism. In: Vosniadou S, Kayser D, Protopapas A, editors. Proceedings of EuroCogSci07. Hillsdale, NJ: Lawrence Erlbaum Associates; 2007. p. 23–8.

    Google Scholar 

  • Frankland PW, Kohler S, Josselyn SA. Hippocampal neurogenesis and forgetting. Trends Neurosci. 2013;36:497–503. https://doi.org/10.1016/j.tins.2013.05.002.

    Article  CAS  PubMed  Google Scholar 

  • Fraser GW, Schwartz AB. Recording from the same neurons chronically in motor cortex. J Neurophysiol. 2012;107:1970–8. https://doi.org/10.1152/jn.01012.2010.

    Article  PubMed  Google Scholar 

  • Freeman JH Jr, Gabriel M. Changes of cingulothalamic topographic excitation patterns and avoidance response incubation over time following initial discriminative conditioning in rabbits. Neurobiol Learn Mem. 1999;72:259–72.

    Article  Google Scholar 

  • Gabriel M, Vogt BA, Kubota Y, Poremba A, Kang E. Training-stage related neuronal plasticity in limbic thalamus and cingulate cortex during learning: a possible key to mnemonic retrieval. Behav Brain Res. 1991;46:175–85.

    Article  CAS  Google Scholar 

  • Gavrilov V, Grinchenko YV, Alexandrov YI. Do neurons in homologous cortical areas of rabbits and rats have similar behavioral specialization? FENS Abstr. 2002;1:A040.8.

    Google Scholar 

  • Gorkin AG, Shevchenko DG. Distinctions in the neuronal activity of the rabbit limbic cortex under different training strategies. Neurosci Behav Physiol. 1996;26(2):103–12.

    Article  CAS  Google Scholar 

  • Greenberg PA, Wilson FAW. Functional stability of dorsolateral prefrontal neurons. J Neurophysiol. 2004;92:1042–55.

    Article  Google Scholar 

  • Gregory TR. Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biol Rev. 2001;76:65–101.

    Article  CAS  Google Scholar 

  • Grosmark AD, Buzsáki G. Diversity in neural firing dynamics supports both rigid and learned hippocampal sequences. Science. 2016;351(6280):1440–3. https://doi.org/10.1126/science.aad1935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartley T, Lever C, Burgess N, O’Keefe J. Space in the brain: how the hippocampal formation supports spatial cognition. Philos Trans R Soc Lond Ser B Biol Sci. 2013;369(1635):20120510. https://doi.org/10.1098/rstb.2012.0510.

    Article  Google Scholar 

  • Hayden BY, Smith DV, Platt ML. Cognitive control signals in posterior cingulate cortex. Front Hum Neurosci. 2010;4:1–8. https://doi.org/10.3389/fnhum.2010.00223.

    Article  Google Scholar 

  • Hennies N, Ralph MA, Kempkes M, Cousins JN, Lewis PA. Sleep spindle density predicts the effect of prior knowledge on memory consolidation. J Neurosci. 2016;36(13):3799–810. https://doi.org/10.1523/JNEUROSCI.3162-15.2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrera DG, Robertson HA. Activation of c-fos in the brain. Prog Neurobiol. 1996;50(2–3):83–107.

    Article  CAS  Google Scholar 

  • Horn G. Pathways of the past: the imprint of memory. Nat Rev Neurosci. 2004;5:108–21.

    Article  CAS  Google Scholar 

  • Hoshiba Y, Wada T, Hayashi-Takagi A. Synaptic ensemble underlying the selection and consolidation of neuronal circuits during learning. Front Neural Circuits. 2017;11:12. https://doi.org/10.3389/fncir.2017.00012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hupbach A, Gomez R, Hardt O, Nadel L. The dynamics of memory: context-dependent updating. Learn Mem. 2008;15:574579. https://doi.org/10.1101/lm.1022308.

    Article  Google Scholar 

  • Jackson A, Mavoori J, Fetz EE. Correlations between the same motor cortex cells and arm muscles during a trained task, free behavior, and natural sleep in the macaque monkey. J Neurophysiol. 2007;97:360–74.

    Article  Google Scholar 

  • Kandel ER. In search of memory: the emergence of a new science of mind. New York: WW Norton & Company; 2006.

    Google Scholar 

  • Karni A, Meyer G, Jezzard P, Adams MM, Turner R, Ungerleider LG. Functional MRI evidences for adult motor cortex plasticity during motor skill learning. Nature. 1995;377:155–8.

    Article  CAS  Google Scholar 

  • Katche C, Dorman G, Slipczuk L, Cammarota M, Medina JH. Functional integrity of the retrosplenial cortex is essential for rapid consolidation and recall of fear memory. Learn Mem. 2013;20:170–3. https://doi.org/10.1101/lm.030080.112.

    Article  PubMed  Google Scholar 

  • Kelly AMC, Garavan H. Human functional neuroimaging of brain changes associated with practice. Cereb Cortex. 2005;15:1089–102.

    Article  Google Scholar 

  • Kempermann G, Kuhn GH, Gage FH. Experience-induced neurogenesis in the senescent dentate gyrus. J Neurosci. 1998;18:3206–12.

    Article  CAS  Google Scholar 

  • Kitamura T, Ogawa SK, Roy DS, Okuyama T, Morrissey MD, Smith LM, Redondo RL, Tonegawa S. Engrams and circuits crucial for systems consolidation of a memory. Science. 2017;356(6333):73–8. https://doi.org/10.1126/science.aam6808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korhonen O, Saarimäki H, Glerean E, Sams M, Saramäki J. Consistency of regions of interest as nodes of fMRI functional brain networks. Netw Neurosci. 2017;1(3):254–74. https://doi.org/10.1162/NETN_a_00013.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kubik S, Miyashita T, Guzowski JF. Using immediate-early genes to map hippocampal subregional functions. Learn Mem. 2007;14:758–70.

    Article  Google Scholar 

  • Kuzina EA, Gorkin AG, AlexandrovYu.I. Neuron activity in the retrosplenial cortex of the rat at the early and late stages of memory consolidation. Neuroscience and Behavioral Physiology. 2016;46(7):789–793. https://doi.org/10.1007/s11055-016-0312-z.

    Article  Google Scholar 

  • Lee Y, Park KH, Baik SH, Chi C. Attenuation of c-Fos basal expression in the cerebral cortex of aged rat. Neuroreport. 1998;9:2733–6.

    Article  CAS  Google Scholar 

  • Leist M, Jäättelä M. Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev. 2001;2:1–10.

    Article  Google Scholar 

  • Lohmann G, Stelzer J, Zuber V, Buschmann T, Margulies D, Bartels A, Scheffler K. Task-related edge density (TED)—a new method for revealing dynamic network formation in fMRI data of the human brain. PLoS One. 2016;11(6):e0158185. https://doi.org/10.1371/journal.pone.0158185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maleeva NE, Ivolgina GL, Anokhin KV, Limborskaia SA. Analysis of the expression of the c-fos proto-oncogene in the rat cerebral cortex during learning. Genetika. 1989;25(6):1119–21. (in Russian).

    CAS  PubMed  Google Scholar 

  • Manahan-Vaughan D, Behnish T, Reymann KG. ACPD-mediated slow-onset potentiation is associated with cell death in the rat CA1 region in vivo. Neuropharmacology. 1999;38:487–94.

    Article  CAS  Google Scholar 

  • Mceachern JC, Shaw CA. An alternative to the LTP orthodoxy: a plasticity-pathology continuum model. Brain Res Rev. 1996;22:51–92.

    Article  CAS  Google Scholar 

  • Mckenzie S, Eichenbaum H. Consolidation and reconsolidation: two lives of memories? Neuron. 2011;71:224–33. https://doi.org/10.1016/j.neuron.2011.06.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mckenzie S, Robinson NT, Herrera L, Churchill JC, Eichenbaum H. Learning causes reorganization of neuronal firing patterns to represent related experiences within a hippocampal schema. J Neurosci. 2013;33(25):10243–56. https://doi.org/10.1523/JNEUROSCI.0879-13.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mcmahon DB, Jones AP, Bondar IV, Leopold DA. Face-selective neurons maintain consistent visual responses across months. Proc Natl Acad Sci U S A. 2014;111(22):8251–6. https://doi.org/10.1073/pnas.1318331111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer RE. Physiologic measures of animal stress during transitional states of consciousness. Animals (Basel). 2015;5(3):702–16. https://doi.org/10.3390/ani5030380.

    Article  Google Scholar 

  • Minatohara K, Akiyoshi M, Okuno H. Role of immediate-early genes in synaptic plasticity and neuronal ensembles underlying the memory trace. Front Mol Neurosci. 2016;8:78. https://doi.org/10.3389/fnmol.2015.00078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moscovitch M, Cabeza R, Winocur G, Nadel L. Episodic memory and beyond: the hippocampus and neocortex in transformation. Annu Rev Psychol. 2016;67:105–34. https://doi.org/10.1146/annurev-psych-113011-143733.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nader K. Response to Arshavsky: challenging the old views. Trends Neurosci. 2003;26:466–8.

    Article  CAS  Google Scholar 

  • Nader K. Reconsolidation and the dynamic nature of memory. Cold Spring Harb Perspect Biol. 2015;7:1–16. https://doi.org/10.1101/cshperspect.a021782.

    Article  CAS  Google Scholar 

  • Nader K, Schafe GE, Le Doux JE. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature. 2000;406:722–6.

    Article  CAS  Google Scholar 

  • Neisser U. Cognition and reality: principles and implications of cognitive psychology. New York: Freeman; 1976.

    Google Scholar 

  • O’Keefe J. Place units in the hippocampus of the freely moving rat. Exp Neurol. 1976;51:78–109.

    Article  Google Scholar 

  • Paton JA, Nottebohm FN. Neurons generated in the adult brain are recruited into functional circuits. Science. 1984;225:1046–8.

    Article  CAS  Google Scholar 

  • Paxinos G, Watson C. The rat brain in stereotaxic co-ordinates. New York: Academic; 1997.

    Google Scholar 

  • Piaget J. Play, dreams, and imitation in childhood. New York: Norton; 1951.

    Google Scholar 

  • Prickaerts J, Koopmans G, Blokland A, Scheepens A. Learning and adult neurogenesis: survival with or without proliferation? Neurobiol Learn Mem. 2004;81:1–11.

    Article  Google Scholar 

  • Ranganath C, Rainer G. Neural mechanisms for detecting and remembering novel events. Nat Rev Neurosci. 2003;4:193–202.

    Article  CAS  Google Scholar 

  • Raoul C, Pettmann B, Henderson CE. Active killing of neurons during development and following stress: a role for p75NTR and Fas? Curr Opin Neurobiol. 2000;10:111–7.

    Article  CAS  Google Scholar 

  • Rose S. The making of memory: from molecules to mind. London: Bantam Books; 1993.

    Google Scholar 

  • Sara SJ. Retrieval and reconsolidation: toward a neurobiology of remembering. Learn Mem. 2000;7:73–84.

    Article  CAS  Google Scholar 

  • Schmidt EM, Bak MJ, Mcintosh JS. Long-term chronic recordings from cortical neurons. Exp Neurol. 1976;52:496–506.

    Article  CAS  Google Scholar 

  • Sherstnev VV, Gruden MA, Alexandrov YI, Storozheva ZI, Golubeva ON, Proshin AT. Different populations of neurons in relevant brain structures are selectively engaged in the functioning of long-term spatial memory. Neurochem J. 2013;7(4):278–83.

    Article  Google Scholar 

  • Shima K, Mushiake H, Saito N, Tanji J. Role for cells in the presupplementary motor area in updating motor plans. Proc Natl Acad Sci U S A. 1996;93:8694–8.

    Article  CAS  Google Scholar 

  • Shors TJ, Matzel LD. Long-term potentiation [LTP]: what’s learning got to do with it? Behav Brain Sci. 1997;20:597–655.

    CAS  PubMed  Google Scholar 

  • Shors TJ, Miesegaes G, Beylin A, Zhao M, Rydel T, Gould E. Neurogenesis in the adult is involved in the formation of trace memories. Nature. 2001;410:372–6.

    Article  CAS  Google Scholar 

  • Shvyrkov VB. Behavioral specialization of neurons and the system-selection hypothesis of learning. In: Klix F, Hagendorf H, editors. Human memory and cognitive capabilities. Amsterdam: Elsevier; 1986. p. 599–611.

    Google Scholar 

  • Smith DM, Barredo J, Mizumori SJY. Complimentary roles of the hippocampus and retrosplenial cortex in behavioral context discrimination. Hippocampus. 2012;22:1121–33. https://doi.org/10.1002/hipo.20958.

    Article  PubMed  Google Scholar 

  • Sozinov AA, Kazymaev SA, Grinchenko YV, Alexandrov YI. Percent of task-specialized cingulate cortex neurons does not change during training. FENS Abstr. 2012;6:114.08.

    Google Scholar 

  • Stone EA, Zhang Y, John S, Filer D, Bing G. Effect of locus coeruleus lesion on c-fos expression in the cerebral cortex caused by yohimbine injection or stress. Brain Res. 1993;603:181–5.

    Article  CAS  Google Scholar 

  • Strassmann JE, Zhu Y, Queller DC. Altruism and social cheating in the social amoeba Dictyostelium discoideum. Nature. 2000;408:965–7.

    Article  CAS  Google Scholar 

  • Svarnik OE, Alexandrov YI, Gavrilov VV, Grinchenko YV, Anokhin KV. Fos expression and task-related neuronal activity in rat cerebral cortex after instrumental learning. Neuroscience. 2005;136:33–42.

    Article  CAS  Google Scholar 

  • Svarnik OE, Bulava AI, Alexandrov YI. Expression of c-Fos in the rat retrosplenial cortex during instrumental re-learning of appetitive bar-pressing depends on the number of stages of previous training. Front Behav Neurosci. 2013;7:78. https://doi.org/10.3389/fnbeh.2013.00078.

    Article  PubMed  PubMed Central  Google Scholar 

  • Swadlow HA, Hicks TP. Subthreshold receptive ields and baseline excitability of “silent” S1 callosal neurons in awake rabbits: contributions of AMPA/kainate and NMDA receptors. Exp Brain Res. 1997;115:403–9.

    Article  CAS  Google Scholar 

  • Thompson LT, Best PJ. Long-term stability of the place-field activity of single units recorded from the dorsal hippocampus of freely behaving rats. Brain Res. 1990;509:299–308.

    Article  CAS  Google Scholar 

  • Tischmeyer W, Kaczmarek L, Strauss M, Jork R, Matthies H. Accumulation of c-fos mRNA in rat hippocampus during acquisition of a brightness discrimination. Behav Neural Biol. 1990;54(2):165–71.

    Article  CAS  Google Scholar 

  • Tolman EC. Cognitive maps in rats and men. Psychol Rev. 1948;55(4):189–208.

    Article  CAS  Google Scholar 

  • Tracy J, Flanders A, Madi S, Laskas J, Stoddard E, Pyrros A, Natale P, Delvecchio N. Regional brain activation associated with different performance patterns during learning of a complex motor skill. Cereb Cortex. 2003;13:904–10.

    Article  Google Scholar 

  • Tse D, Langston RF, Kakeyama M, Bethus I, Spooner PA, Wood ER, Witter MP, Morris RGM. Schemas and memory consolidation. Science. 2007;316:76–82.

    Article  CAS  Google Scholar 

  • Tse D, Takeuchi T, Kakeyama M, Kajii Y, Okuno H, Tohyama C, Bito H, Morris RGM. Schema-dependent gene activation and memory encoding in neocortex. Science. 2011;333:891–5. https://doi.org/10.1126/science.1205274.

    Article  CAS  PubMed  Google Scholar 

  • Vetere G, Restivo L, Novembre G, Aceti M, Lumaca M, Ammassari-Teule M. Extinction partially reverts structural changes associated with remote fear memory. Learn Mem. 2011;18:554–7. https://doi.org/10.1101/lm.2246711.

    Article  PubMed  Google Scholar 

  • Vikman KS, Duggan AW, Siddall PJ. Increased ability to induce long-term potentiation of spinal dorsal horn neurons in monoarthritic rats. Brain Res. 2003;990:51–7.

    Article  CAS  Google Scholar 

  • Vogt BA, Sikers RW, Swaldow HA, Weyand TG. Rabbit cingulate cortex: cytoarchitecture, physiological border with visual cortex, and different cortical connections of visual, motor, postsubicular and intracingulate origin. J Comp Neurol. 1986;248:74–94.

    Article  CAS  Google Scholar 

  • von Stein A, Chiang C, König P. Top-down processing mediated by interareal synchronization. Proc Natl Acad Sci. 2000;97(26):14748–53. https://doi.org/10.1073/pnas.97.26.14748.

    Article  Google Scholar 

  • Weber A, Prokazov Y, Zuschratter W, Hauser MJB. Desynchronisation of glycolytic oscillations in yeast cell populations. PLoS One. 2012;7(9):e43276.

    Article  CAS  Google Scholar 

  • Weible AP, Rowland DC, Pang R, Kentros C. Neural correlates of novel object and novel location recognition behavior in the mouse anterior cingulate cortex. J Neurophysiol. 2009;102:2055–68. https://doi.org/10.1152/jn.00214.2009.

    Article  PubMed  Google Scholar 

  • Weible AP, Rowland DC, Monaghan CK, Wolfgang NT, Kentros CG. Neural correlates of long-term object memory in the mouse anterior cingulate cortex. J Neurosci. 2012;32:5598–608. https://doi.org/10.1523/JNEUROSCI.5265-11.2012.

    Article  CAS  PubMed  Google Scholar 

  • Whishaw IQ, Sarna JR, Pellis SM. Evidence for rodent-common and species-typical limb and digit use in eating, derived from a comparative analysis of ten rodent species. Behav Brain Res. 1998;96:79–91.

    Article  CAS  Google Scholar 

  • Williams JC, Rennaker RL, Kipke DR. Stability of chronic multichannel neural recordings: implications for a long-term neural interface. Neurocomputing. 1999;26:1069–76.

    Article  Google Scholar 

  • Wilson MA, Mcnaughton BL. Dynamics of the hippocampal ensemble code for space. Science. 1993;261:1055–8.

    Article  CAS  Google Scholar 

  • Wirth S, Yanike M, Frank LM, Smith AC, Brown EN, Wendy AS. Single neurons in the monkey hippocampus and learning new associations. Science. 2003;300:1578–81.

    Article  CAS  Google Scholar 

  • Wright R. The moral animal: evolutionary psychology and everyday life. New York: Vintage Books; 1995.

    Google Scholar 

  • Xue ZM. The studies on neurogenesis induced by brain injury in adult ring dove. Cell Res. 1998;8:151–62.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Russian Science Foundation grant #14-28-00229 for Institute of Psychology, Russian Academy of Sciences.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alexandrov, Y.I., Sozinov, A.A., Svarnik, O.E., Gorkin, A.G., Kuzina, E.A., Gavrilov, V.V. (2018). Neuronal Bases of Systemic Organization of Behavior. In: Cheung-Hoi Yu, A., Li, L. (eds) Systems Neuroscience. Advances in Neurobiology, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-94593-4_1

Download citation

Publish with us

Policies and ethics