Advertisement

Numerical Series

  • Rinaldo B. Schinazi
Chapter
  • 838 Downloads

Abstract

Let (an) be a sequence of real numbers. Define the sequence (sn) by
$$\displaystyle s_n=a_1+a_2+\dots +a_n=\sum _{k=1}^n a_k, $$
for every n ≥ 1.

References

  1. W. Rudin, Principles of Mathematical Analysis, 3rd edn. (McGraw Hill, New York, 1976)zbMATHGoogle Scholar
  2. R.B. Schinazi, From Calculus to Analysis (Birkhauser, Boston, 2011)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Rinaldo B. Schinazi
    • 1
  1. 1.Department of MathematicsUniversity of ColoradoColorado SpringsUSA

Personalised recommendations