Skip to main content

Electric Vehicles Fleet for Frequency Regulation Using a Multi-Agent System

  • Conference paper
  • First Online:
Advances in Practical Applications of Agents, Multi-Agent Systems, and Complexity: The PAAMS Collection (PAAMS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10978))

  • 1540 Accesses

Abstract

The production of PhotoVoltaic (PV) energy depends on the solar irradiance level. The PV power plant fluctuations may have a significant impact on the frequency regulation in sufficiently small power systems, such as islands. The objective of this paper is to present a method using cooperative multi-agent systems to reduce the frequency fluctuations due to the unpredicted fluctuations of the PV production using electric vehicles as electricity storage units in an isolated power system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    EPA Federal Test Procedure. This is a series of tests defined by the US Environmental Protection Agency (EPA) modeling the speed of a vehicle under urban conditions.

References

  1. Haessig, P., Multon, B., Ben Ahmed, H., Lascaud, S., Bondon, P.: Energy storage sizing for wind power: impact of the autocorrelation of day-ahead forecast errors. Wind Energy 18(1), 43–57 (2015)

    Google Scholar 

  2. Codani, P., Perez, Y., Petit, M.: Electric vehicles as a mobile storage device. In: Handbook of Clean Energy Systems, vol. 5 (2015). Energy Storage

    Google Scholar 

  3. Le Goff Latimier, R., Multon, B., Ben Ahmed, H., Baraer, F., Acquitter, M.: Stochastic optimization of an electric vehicle fleet charging with uncertain photovoltaic production. In: International Conference on Renewable Energy Research and Applications, ICRERA 2015, pp. 721–726 (2015)

    Google Scholar 

  4. Lund, H., Kempton, W.: Integration of renewable energy into the transport and electricity sectors through V2G. Energy Policy 36(9), 3578–3587 (2008)

    Article  Google Scholar 

  5. Rigas, E.S., Member, S., Ramchurn, S.D., Bassiliades, N.: Managing electric vehicles in the smart grid using artificial intelligence : a survey. IEEE Trans. Intell. Transp. Syst. 16(4), 1619–1635 (2015)

    Article  Google Scholar 

  6. Crawley, C., Cameron, B., Selva, D.: System Architecture: Strategy and Product Development for Complex Systems, 1st edn. Prentice Hall Press, Upper Saddle River (2015)

    Google Scholar 

  7. Crédo Paniah, M.K., Mercier, D., Gil-Quijano, J.: Multi-agents system for the management of renewable energy sources and mass storage. The European Power Electronics and Drives Association - Workshop: DC grid for more Renewable Energy (2013)

    Google Scholar 

  8. Hernandez, L., Baladron, C., Aguiar, J.M., Carro, B., Sanchez-Esguevillas, A., Lloret, J., Chinarro, D., Gomez-Sanz, J., Cook, D.: A multi-agent system architecture for smart grid management and forecasting of energy demand in virtual power plants. IEEE Commun. Mag. 51(1), 106–113 (2013)

    Article  Google Scholar 

  9. Lopes, J.A.P., Almeida, P.M.R., Soares, F.J.: Using vehicle-to-grid to maximize the integration of intermittent renewable energy resources in islanded electric grids. In: International Conference on Clean Electrical Power, ICCEP 2009, pp. 290–295 (2009)

    Google Scholar 

  10. Mu, Y., Wu, J., Ekanayake, J., Jenkins, N., Jia, H.: Primary frequency response from electric vehicles in the Great Britain power system. IEEE Trans. Smart Grid 4(2), 1142–1150 (2013)

    Article  Google Scholar 

  11. Gao, S., Chau, K.T., Liu, C., Wu, D., Chan, C.C.: Integrated energy management of plug-in electric vehicles in power grid with renewables. IEEE Trans. Veh. Technol. 63(7), 3019–3027 (2014)

    Article  Google Scholar 

  12. Depoorter, S., Assimon, P. M.: Les véhicules électriques en perspective, analyse coûts-avantages et demande potentielle (2011)

    Google Scholar 

  13. Serugendo, G.D.M., Gleizes, M.P., Karageorgos, A. (eds.): Self-Organising Software: From Natural to Artificial Adaptation. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-17348-6

    Book  MATH  Google Scholar 

  14. Bernon, C., Gleizes, M.-P., Peyruqueou, S., Picard, G.: ADELFE: a methodology for adaptive multi-agent systems engineering. In: Petta, P., Tolksdorf, R., Zambonelli, F. (eds.) ESAW 2002. LNCS (LNAI), vol. 2577, pp. 156–169. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39173-8_12

    Chapter  MATH  Google Scholar 

  15. Jorquera, T.: An adaptive multi-agent system for self-organizing continuous optimization. Doctoral thesis, Université Paul Sabatier (2013)

    Google Scholar 

  16. Georgé, J.P., Gleizes, M.P., Camps, V.: Cooperation. In: Di Marzo Serugendo, G., Gleizes, M.P., Karageorgos, A. (eds.) Self-Organising Software: From Natural to Artificial Adaptation. Springer-Verlag, Natural Computing Series (2011). https://doi.org/10.1007/978-3-642-17348-6

    Chapter  Google Scholar 

  17. Sengupta, M., Andreas, A.: Oahu Solar Measurement Grid (1-Year Archive): 1-Second Solar Irradiance; Oahu, Hawaii (Data); NREL Report No. DA-5500-56506 (2010). https://doi.org/10.5439/1052451

Download references

Acknowledgments

The authors wish to acknoweldge Riadh Zorgati, Senior Research Engineer at EDF R&D, France, for his technical help and Alexandre Perles, from IRIT, for the AMAK framework used to support our experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Baptiste Blanc-Rouchossé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Blanc-Rouchossé, JB., Blavette, A., Camilleri, G., Gleizes, MP. (2018). Electric Vehicles Fleet for Frequency Regulation Using a Multi-Agent System. In: Demazeau, Y., An, B., Bajo, J., Fernández-Caballero, A. (eds) Advances in Practical Applications of Agents, Multi-Agent Systems, and Complexity: The PAAMS Collection. PAAMS 2018. Lecture Notes in Computer Science(), vol 10978. Springer, Cham. https://doi.org/10.1007/978-3-319-94580-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94580-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94579-8

  • Online ISBN: 978-3-319-94580-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics