Abstract
Mathematical modeling has become essential in the field of infectious diseases epidemiology, particularly when it comes to studying the transmission of pathogens. However, most models simulate only one pathogen, whereas many species can circulate in the same population and impact each other’s transmission dynamics. Here we present a new agent-based model, SimFI, formalizing the co-circulation of two distinct pathogens in a human population. Several between-pathogen interaction mechanisms are implemented at the individual scale, and their effects on the global transmission dynamics at the population scale are studied. The model produces independent time series of infection cases for the two pathogens, mimicking the data usually collected by infectious diseases surveillance systems. This study highlights the importance of precisely representing phenomena occurring at the individual level and the complexity of ecological interactions, thus confirming the usefulness of agent-based models to better understand between-pathogen interactions in epidemiology.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Grassly, N.C., Fraser, C.: Mathematical models of infectious disease transmission. Nat. Rev. Microbiol. 6(6), 477–487 (2008)
Qiu, Z., Feng, Z.: Transmission dynamics of an influenza model with vaccination and antiviral treatment. Bull. Math. Biol. 72(1), 1–33 (2010)
Pawlowski, A., Jansson, M., Sköld, M., Rottenberg, M.E., Källenius, G.: Tuberculosis and HIV co-infection. PLoS Pathog. 8(2), e1002464 (2012)
Bosch, A.A.T.M., Biesbroek, G., Trzcinski, K., Sanders, E.A.M., Bogaert, D.: Viral and bacterial interactions in the upper respiratory tract. PLoS Pathog. 9(1), e1003057 (2013)
Opatowski, L., Varon, E., Dupont, C., Temime, L., van der Werf, S., et al.: Assessing pneumococcal meningitis association with viral respiratory infections and antibiotics: insights from statistical and mathematical models. Proc. Biol. Sci./Roy. Soc. 280(1764), 20130519 (2013)
Shrestha, S., Foxman, B., Weinberger, D.M., Steiner, C., Viboud, C., et al.: Identifying the interaction between influenza and pneumococcal pneumonia using incidence data. Sci. Transl. Med. 5(191), 191ra84 (2013)
Willem, L., Verelst, F., Bilcke, J., Hens, N., Beutels, P.: Lessons from a decade of individual-based models for infectious disease transmission: a systematic review (2006–2015). BMC Infect. Dis. 17(1), 612 (2017)
Roche, B., Drake, J.M., Rohani, P.: An agent-based model to study the epidemiological and evolutionary dynamics of influenza viruses. BMC Bioinform. 12(1), 87 (2011)
Guo, D., Li, K.C., Peters, T.R., Snively, B.M., Poehling, K.A., et al.: Multi-scale modeling for the transmission of influenza and the evaluation of interventions toward it. Sci. Rep. 5, 8980 (2015)
Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., et al.: A standard protocol for describing individual-based and agent-based models. Ecol. Model. 198(1–2), 115–126 (2006)
Wilensky, U.: NetLogo (1999). http://ccl.northwestern.edu/netlogo/
Mina, M.J., Klugman, K.P.: The role of influenza in the severity and transmission of respiratory bacterial disease. Lancet Respir. Med. 2(9), 750–763 (2014)
Opatowski, L., Baguelin, M., Eggo, R.M.: Influenza interaction with cocirculating pathogens, and its impact on surveillance, pathogenesis and epidemic profile: a key role for mathematical modeling. PLoS Pathog. 14(2), e1006770 (2017)
Short, K., Habets, M.: Interactions between Streptococcus pneumoniae and influenza virus: a mutually beneficial relationship? Future Microbiol. 7(5), 609–624 (2012)
Lee, L.N., Dias, P., Han, D., Yoon, S., Shea, A., et al.: A mouse model of lethal synergism between influenza virus and Haemophilus influenzae. Am. J. Pathol. 176(2), 800–811 (2010)
Goka, E.A., Vallely, P.J., Mutton, K.J., Klapper, P.E.: Single and multiple respiratory virus infections and severity of respiratory disease: a systematic review. Paediatr. Respir. Rev. 15(4), 363–370 (2014)
Yoshida, L.M., Suzuki, M., Nguyen, H.A., Le, M.N., Vu, T.D., et al.: Respiratory syncytial virus: co-infection and paediatric lower respiratory tract infections. Eur. Respir. J. 42(2), 461–469 (2013)
Walzl, G., Tafuro, S., Moss, P., Openshaw, P.J., Hussell, T.: Influenza virus lung infection protects from respiratory syncytial virus-induced immunopathology. J. Exp. Med. 192(9), 1317–1326 (2000)
Schnepf, N., Resche-Rigon, M., Chaillon, A., Scemla, A., Gras, G., et al.: High burden of non-influenza viruses in influenza-like illness in the early weeks of H1N1v epidemic in France. PloS One 6(8), e23514 (2011)
Punpanich, W., Chotpitayasunondh, T.: A review on the clinical spectrum and natural history of human influenza. Int. J. Infect. Dis. 16(10), e714–e723 (2012)
Abdullahi, O., Karani, A., Tigoi, C.C., Mugo, D., Kungu, S., et al.: Rates of acquisition and clearance of pneumococcal serotypes in the nasopharynges of children in Kilifi District, Kenya. J. Infect. Dis. 206(7), 1020–1029 (2012)
Chidiac, C.: Antibiothérapie par voie générale dans les infections respiratoires basses de l’adulte. Pneumonie aiguë communautaire. Exacerbations de bronchopneumopathie chronique obstructive. Médecine et Maladies Infectieuses 41(5), 221–228 (2011)
INSEE: (2017). https://www.insee.fr/fr/statistiques/2383448
Mossong, J., Hens, N., Jit, M., Beutels, P., Auranen, K., et al.: Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med. 5(3), 0381–0391 (2008)
Sentinelles: https://websenti.u707.jussieu.fr/sentiweb/?page=presentation
Abdullahi, O., Nyiro, J., Lewa, P., Slack, M., Scott, J.A.G.: The descriptive epidemiology of Streptococcus pneumoniae and Haemophilus influenzae nasopharyngeal carriage in children and adults in Kilifi district, Kenya. Pediatr. Infect. Dis. J. 27(1), 59–64 (2008)
Haut Conseil de la Santé Publique: Avis relatif aux recommandations de la vaccination pour les adultes et les enfants âgés de plus de 2 ans à risque d’infection invasive à pneumocoque 1–13 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Arduin, H., Opatowski, L. (2018). SimFI: A Transmission Agent-Based Model of Two Interacting Pathogens. In: Demazeau, Y., An, B., Bajo, J., Fernández-Caballero, A. (eds) Advances in Practical Applications of Agents, Multi-Agent Systems, and Complexity: The PAAMS Collection. PAAMS 2018. Lecture Notes in Computer Science(), vol 10978. Springer, Cham. https://doi.org/10.1007/978-3-319-94580-4_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-94580-4_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-94579-8
Online ISBN: 978-3-319-94580-4
eBook Packages: Computer ScienceComputer Science (R0)