Skip to main content

A Resilient Agent-Based Re-organizing Traffic Network for Urban Evacuations

  • Conference paper
  • First Online:
Advances in Practical Applications of Agents, Multi-Agent Systems, and Complexity: The PAAMS Collection (PAAMS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10978))

Abstract

Implementing effective traffic road reversals is a complex problem: it requires clearing roads from traffic before implementing safe road reversal operations and often results in anomalies in the network topology. Road reversals are further complicated when, due to unexpected events (e.g., torrential rains), roads are suddenly closed. Current traffic road reversal approaches are based on the execution of mathematical models which identify upfront, optimal reversal configurations for the entire traffic network. These approaches assume that the traffic network structure is static, and as such do not allow for dynamic road closures. In this paper, we present a resilient agent-based re-organizing traffic model for urban evacuations. Resilience refers to the traffic network’s ability to regain its evacuation function quickly and efficiently after severe perturbations. The proposed model integrates road reversal and zoning strategies. Experimental results show that: (a) the model improves the evacuation effort, and (b) the evacuation function is able to cope quickly and effectively with dynamic road closures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Demonstrations for the experiments are available athttp://www.utdmavs.org/its/.

References

  1. Aksu, D.T., Ozdamar, L.: A mathematical model for post-disaster road restoration: enabling accessibility and evacuation. Transp. Res. Part E: Logistics Transp. Rev. 61(Suppl. C), 56–67 (2014)

    Google Scholar 

  2. Al-Zinati, M., Wenkstern, R.: Simulation of traffic network re-organization operations. In: Proceedings of the 20th IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications, pp. 178–186, September 2016

    Google Scholar 

  3. Al-Zinati, M., Wenkstern, R.Z.: An agent-based self-organizing traffic environment for urban evacuations. In: Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems, Sao Paulo, Brazil, pp. 1454–1456 (2017)

    Google Scholar 

  4. Al-Zinati, M., Zalila-Wenkstern, R.: Matisse 2.0: a large-scale multi-agent simulation system for agent-based ITS. In: 2015 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Singapore, pp. 328–335, December 2015

    Google Scholar 

  5. American Association of State Highway and Transportation Officials: Policy on Geometric Design of Highways and Streets. Sixth edn (2011)

    Google Scholar 

  6. Cova, T.J., Johnson, J.P.: A network flow model for lane-based evacuation routing. Transp. Res. Part A: Policy Practice 37(7), 579–604 (2003)

    Google Scholar 

  7. Duell, M., Levin, M.W., Boyles, S.D., Waller, S.T.: System optimal dynamic lane reversal for autonomous vehicles. In: 18th International Conference on Intelligent Transportation Systems, Las Palmas, Spain, pp. 1825–1830, September 2015

    Google Scholar 

  8. Faturechi, R., Miller-Hooks, E.: Measuring the performance of transportation infrastructure systems in disasters: a comprehensive review. J. Infrastruct. Syst. 21(1), 04014025 (2015)

    Article  Google Scholar 

  9. Gershenson, C.: Self-organizing urban transportation systems. In: Portugali, J., Meyer, H., Stolk, E., Tan, E. (eds.) Complexity Theories of Cities Have Come of Age, pp. 269–279. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24544-2_15

    Google Scholar 

  10. Hausknecht, M., Au, T.C., Stone, P., Fajardo, D., Waller, T.: Dynamic lane reversal in traffic management. In: 14th International Conference on Intelligent Transportation Systems (ITSC), Washington DC, USA, pp. 1929–1934, October 2011

    Google Scholar 

  11. Kim, S., Shekhar, S., Min, M.: Contraflow transportation network reconfiguration for evacuation route planning. IEEE Trans. Knowl. Data Eng. 20(8), 1115–1129 (2008)

    Article  Google Scholar 

  12. Konstantinidou, M., Kepaptsoglou, K., Karlaftis, M.: Transportation network post-disaster planning and management: a review part I. Int. J. Transp. 2(3), 1–16 (2014)

    Article  Google Scholar 

  13. Lim, E., Wolshon, B.: Modeling and performance assessment of contraflow evacuation termination points. Transp. Res. Rec.: J. Transp. Res. Board 1922(1), 118–128 (2005)

    Article  Google Scholar 

  14. Matisziw, T.C., Murray, A.T., Grubesic, T.H.: Strategic network restoration. Netw. Spatial Econ. 10(3), 345–361 (2010)

    Article  MathSciNet  Google Scholar 

  15. Mattsson, L.G., Jenelius, E.: Vulnerability and resilience of transport systems - a discussion of recent research. Transp. Res. Part A: Policy Practice 81(Suppl. C), 16–34 (2015)

    Google Scholar 

  16. Meng, Q., Khoo, H.L., Cheu, R.L.: Microscopic traffic simulation model-based optimization approach for the contraflow lane configuration problem. J. Transp. Eng. 134(1), 41–49 (2008)

    Article  Google Scholar 

  17. Miller-Hooks, E., Zhang, X., Faturechi, R.: Measuring and maximizing resilience of freight transportation networks. Comput. Oper. Res. 39(7), 1633–1643 (2012)

    Article  MathSciNet  Google Scholar 

  18. Ozdamar, L., Aksu, D.T., Ergüneş, B.: Coordinating debris cleanup operations in post disaster road networks. Socio-Econ. Plann. 48(4), 249–262 (2014)

    Article  Google Scholar 

  19. Snelder, M., van Zuylen, H., Immers, L.: A framework for robustness analysis of road networks for short term variations in supply. Transp. Res. Part A: Policy Practice 46(5), 828–842 (2012)

    Google Scholar 

  20. Tuydes, H., Ziliaskopoulos, A.: Tabu-based heuristic approach for optimization of network evacuation contraflow. Transp. Res. Rec.: J. Transp. Res. Board 1964(1), 157–168 (2006)

    Article  Google Scholar 

  21. Wang, J.W., Wang, H.F., Zhou, Y.M., Wang, Y., Zhang, W.J.: On an integrated approach to resilient transportation systems in emergency situations. Nat. Comput. 1–9 (2017)

    Google Scholar 

  22. Wang, J., Ip, W., Zhang, W.: An integrated road construction and resource planning approach to the evacuation of victims from single source to multiple destinations. IEEE Trans. Intell. Transp. Syst. 11(2), 277–289 (2010)

    Article  Google Scholar 

  23. Wang, J., Wang, H., Zhang, W., Ip, W., Furuta, K.: Evacuation planning based on the contraflow technique with consideration of evacuation priorities and traffic setup time. IEEE Trans. Intell. Transp. Syst. 14(1), 480–485 (2013)

    Article  Google Scholar 

  24. Wolshon, B.: “ONE-WAY-OUT”: contraflow freeway operation for hurricane evacuation. Nat. Hazards Rev. 2(3), 105–112 (2001)

    Article  Google Scholar 

  25. Wolshon, B., Urbina Hamilton, E., Levitan, M., Wilmot, C.: Review of policies and practices for hurricane evacuation. II: traffic operations, management, and control. Nat. Hazards Rev. 6(3), 143–161 (2005)

    Article  Google Scholar 

  26. Xie, C., Turnquist, M.A.: Lane-based evacuation network optimization: an integrated Lagrangian relaxation and tabu search approach. Transp. Res. Part C: Emerg. Technol. 19(1), 40–63 (2011)

    Article  Google Scholar 

  27. Zalila-Wenkstern, R., Steel, T., Leask, G.: A self-organizing architecture for traffic management. In: Weyns, D., Malek, S., de Lemos, R., Andersson, J. (eds.) SOAR 2009. LNCS, vol. 6090, pp. 230–250. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14412-7_11

    Chapter  Google Scholar 

  28. Zhao, X., Ren, G., Huang, Z.: Optimizing one-way traffic network reconfiguration and lane-based non-diversion routing for evacuation. J. Adv. Transp. 50(4), 589–607 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Al-Zinati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Al-Zinati, M., Zalila-Wenkstern, R. (2018). A Resilient Agent-Based Re-organizing Traffic Network for Urban Evacuations. In: Demazeau, Y., An, B., Bajo, J., Fernández-Caballero, A. (eds) Advances in Practical Applications of Agents, Multi-Agent Systems, and Complexity: The PAAMS Collection. PAAMS 2018. Lecture Notes in Computer Science(), vol 10978. Springer, Cham. https://doi.org/10.1007/978-3-319-94580-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94580-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94579-8

  • Online ISBN: 978-3-319-94580-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics