Skip to main content

Towards Reducing Complexity of Multi-agent Simulations by Applying Model-Driven Techniques

  • Conference paper
  • First Online:
Advances in Practical Applications of Agents, Multi-Agent Systems, and Complexity: The PAAMS Collection (PAAMS 2018)

Abstract

Creating multi-agent simulations is a challenging task often requiring programming skills at the professional software developer level. Model driven methods of software development are an appropriate tool for reducing the complexity of the development process of such simulations. The modeller is relieved from implementing time consuming programming details and can concentrate on the application itself. We present the domain specific language Athos with which network based traffic simulations can be created declaratively. The models are platform independent and executable code can be generated for two popular multi-agent platforms. We use a simple yet illustrative example to show how Athos can be applied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://ccl.northwestern.edu/netlogo/.

  2. 2.

    https://repast.github.io/download.html.

  3. 3.

    https://www.eclipse.org/Xtext/.

References

  1. Bazzan, A.L.C., Klügl, F.: A review on agent-based technology for traffic and transportation. Knowl. Eng. Rev. 29(03), 375–403 (2014)

    Article  Google Scholar 

  2. Bellifemine, F., Bergenti, F., Caire, G., Poggi, A.: Jade—a Java agent development framework. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah, S.A. (eds.) Multi-Agent Programming. Multiagent Systems, Artificial Societies, and Simulated Organizations, vol. 15, pp. 125–147. Springer, Boston (2005). https://doi.org/10.1007/0-387-26350-0_5

    Chapter  Google Scholar 

  3. Borenstein, D.B.: Nanoverse: a constraints-based declarative framework for rapid agent-based modeling. In: Yilmaz, L. (ed.) Proceedings of the 2015 Winter Simulation Conference, pp. 206–217. IEEE, Piscataway (2015)

    Google Scholar 

  4. Çetinkaya, D.: A model driven approach to web-based traffic simulation. In: A Model Driven Approach to Web-Based Traffic Simulation (2016)

    Google Scholar 

  5. Challenger, M., Kardas, G., Tekinerdogan, B.: A systematic approach to evaluating domain-specific modeling language environments for multi-agent systems. Softw. Q. J. 1–41 (2015)

    Google Scholar 

  6. Crooks, A., Castle, C., Batty, M.: Key challenges in agent-based modelling for geo-spatial simulation. Comput. Environ. Urban Syst. 32(6), 417–430 (2008)

    Article  Google Scholar 

  7. Van Deursen, A., Klint, P.: Little languages: little maintenance? J. Softw. Maint.: Res. Pract. 10(2), 75–92 (1998)

    Article  Google Scholar 

  8. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)

    Article  MathSciNet  Google Scholar 

  9. Farrenkopf, T., Guckert, M., Urquhart, N., Wells, S.: Ontology based business simulations. J. Artif. Soc. Soc. Simul. 19(4), 14 (2016)

    Article  Google Scholar 

  10. Fowler, M.: Domain Specific Languages, vol. 1. Addison-Wesley Professional, Boston (2010)

    Google Scholar 

  11. Ge, J., Polhill, G.: Exploring the combined effect of factors influencing commuting patterns and CO2 emissions in Aberdeen using an agent-based model. J. Artif. Soc. Soc. Simul. 19(3) (2016)

    Google Scholar 

  12. Grey, R.: Agent Tcl: a transportable agent system. In: Proceedings of the CIKM Workshop on Intelligent Information Agents, Fourth International Conference on Information and Knowledge Management (CIKM 1995) (1995)

    Google Scholar 

  13. Grignard, A., Taillandier, P., Gaudou, B., Vo, D.A., Huynh, N.Q., Drogoul, A.: Gama 1.6: advancing the art of complex agent-based modeling and simulation. In International Conference on Principles and Practice of Multi-agent Systems, pp. 117–131 (2013)

    Google Scholar 

  14. Hassan, S., Fuentes-Fernández, R., Galán, J.M., López-Paredes, A., Pavón, J.: Reducing the modeling gap: on the use of metamodels in agent-based simulation. In: 6th Conference of the European Social Simulation Association (ESSA 2009), pp. 1–13 (2009)

    Google Scholar 

  15. Hermans, F., Pinzger, M., van Deursen, A.: Domain-specific languages in practice: a user study on the success factors. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 423–437. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04425-0_33

    Chapter  Google Scholar 

  16. Horni, A., Nagel, K., Axhausen, K.W.: The Multi-Agent Transport Simulation MATSim. Ubiquity Press, London (2016). https://doi.org/10.5334/baw

    Book  Google Scholar 

  17. North, M.J., Macal, C.M.: Agents up close. In: North, M.J., Macal, C.M. (eds.) Managing Business Complexity, pp. 24–44. Oxford University Press, Oxford (2007)

    Chapter  Google Scholar 

  18. Joppa, L.N., McInerny, G., Harper, R., Salido, L., Takeda, K., O’hara, K., Gavaghan, D., Emmott, S.: Troubling trends in scientific software use. Science 340(6134), 814–815 (2013)

    Article  Google Scholar 

  19. Kardoš, M., Drozdová, M.: Analytical method of CIM to PIM transformation in model driven architecture (MDA). J. Inf. Org. Sci. 34(1), 89–99 (2010)

    Google Scholar 

  20. Kosar, T., Bohra, S., Mernik, M.: Domain-specific languages: a systematic mapping study. Inf. Softw. Technol. 71, 77–91 (2016)

    Article  Google Scholar 

  21. Kosar, T., Mernik, M., Carver, J.C.: Program comprehension of domain-specific and general-purpose languages: comparison using a family of experiments. Emp. Softw. Eng. 17(3), 276–304 (2012)

    Article  Google Scholar 

  22. Lu, R., Jin, Z.: Domain Modeling-based Software Engineering: A Formal Approach, vol. 8, p. 123. Springer, New York (2000). https://doi.org/10.1007/978-1-4615-4487-6

    Book  MATH  Google Scholar 

  23. North, M.J., Macal, C.M.: Agent based modeling and computer languages. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 131–148. Springer, New York (2009). https://doi.org/10.1007/978-0-387-30440-3_8

    Chapter  Google Scholar 

  24. Palmer, R.G., Arthur, W.B., Holland, J.H., LeBaron, B.: An artificial stock market. Artif. Life Robot. 3(1), 27–31 (1999)

    Article  Google Scholar 

  25. Parry, H.R.: Agent based modeling, large scale simulations. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 148–160. Springer, New York (2009). https://doi.org/10.1007/978-0-387-30440-3_9

    Chapter  Google Scholar 

  26. Pavon, J., Gomez-Sanz, J.J., Fuentes, R.: The INGENIAS methodology and tools. In: Henderson-Sellers, B., Giorgini, P. (eds.) Agent-Oriented Methodologies, pp. 236–276. IGI Global, Hershey (2005)

    Chapter  Google Scholar 

  27. Samuelson, P.A.: Tragedy of the open road: avoiding paradox by use of regulated public utilities that charge corrected knightian tolls. J. Int. Comp. Econ. 1(1), 3–12 (1992)

    Google Scholar 

  28. Sansores, C., Pavón, J.: Agent-based simulation replication: a model driven architecture approach. In: Gelbukh, A., de Albornoz, Á., Terashima-Marín, H. (eds.) MICAI 2005. LNCS (LNAI), vol. 3789, pp. 244–253. Springer, Heidelberg (2005). https://doi.org/10.1007/11579427_25

    Chapter  Google Scholar 

  29. Segal, J.: Software development cultures and cooperation problems: a field study of the early stages of development of software for a scientific community. Comput. Support. Coop. Work (CSCW) 18(5), 581 (2009)

    Article  Google Scholar 

  30. Touraille, L., Traoré, M.K., Hill, D.R.C., A model-driven software environment for modeling, simulation and analysis of complex systems. In: Proceedings of the 2011 Symposium on Theory of Modeling & Simulation: DEVS Integrative M&S Symposium, TMS-DEVS 2011, pp. 229–237. Society for Computer Simulation International, San Diego (2011)

    Google Scholar 

  31. Vendrov, I., Dutchyn, C., Osgood, N.D.: Frabjous: a declarative domain-specific language for agent-based modeling. In: Kennedy, W.G., Agarwal, N., Yang, S.J. (eds.) SBP 2014. LNCS, vol. 8393, pp. 385–392. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05579-4_47

    Chapter  Google Scholar 

  32. Wilensky, U.: Netlogo. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL (1999). http://ccl.northwestern.edu/netlogo/

  33. Xiang, X., Kennedy, R., Madey, G., Cabaniss, S.: Verification and validation of agent-based scientific simulation models. In: Agent-Directed Simulation Conference, pp. 47–55 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Hoffmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hoffmann, B., Chalmers, K., Urquhart, N., Farrenkopf, T., Guckert, M. (2018). Towards Reducing Complexity of Multi-agent Simulations by Applying Model-Driven Techniques. In: Demazeau, Y., An, B., Bajo, J., Fernández-Caballero, A. (eds) Advances in Practical Applications of Agents, Multi-Agent Systems, and Complexity: The PAAMS Collection. PAAMS 2018. Lecture Notes in Computer Science(), vol 10978. Springer, Cham. https://doi.org/10.1007/978-3-319-94580-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94580-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94579-8

  • Online ISBN: 978-3-319-94580-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics