Abstract
Creating multi-agent simulations is a challenging task often requiring programming skills at the professional software developer level. Model driven methods of software development are an appropriate tool for reducing the complexity of the development process of such simulations. The modeller is relieved from implementing time consuming programming details and can concentrate on the application itself. We present the domain specific language Athos with which network based traffic simulations can be created declaratively. The models are platform independent and executable code can be generated for two popular multi-agent platforms. We use a simple yet illustrative example to show how Athos can be applied.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bazzan, A.L.C., Klügl, F.: A review on agent-based technology for traffic and transportation. Knowl. Eng. Rev. 29(03), 375–403 (2014)
Bellifemine, F., Bergenti, F., Caire, G., Poggi, A.: Jade—a Java agent development framework. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah, S.A. (eds.) Multi-Agent Programming. Multiagent Systems, Artificial Societies, and Simulated Organizations, vol. 15, pp. 125–147. Springer, Boston (2005). https://doi.org/10.1007/0-387-26350-0_5
Borenstein, D.B.: Nanoverse: a constraints-based declarative framework for rapid agent-based modeling. In: Yilmaz, L. (ed.) Proceedings of the 2015 Winter Simulation Conference, pp. 206–217. IEEE, Piscataway (2015)
Çetinkaya, D.: A model driven approach to web-based traffic simulation. In: A Model Driven Approach to Web-Based Traffic Simulation (2016)
Challenger, M., Kardas, G., Tekinerdogan, B.: A systematic approach to evaluating domain-specific modeling language environments for multi-agent systems. Softw. Q. J. 1–41 (2015)
Crooks, A., Castle, C., Batty, M.: Key challenges in agent-based modelling for geo-spatial simulation. Comput. Environ. Urban Syst. 32(6), 417–430 (2008)
Van Deursen, A., Klint, P.: Little languages: little maintenance? J. Softw. Maint.: Res. Pract. 10(2), 75–92 (1998)
Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)
Farrenkopf, T., Guckert, M., Urquhart, N., Wells, S.: Ontology based business simulations. J. Artif. Soc. Soc. Simul. 19(4), 14 (2016)
Fowler, M.: Domain Specific Languages, vol. 1. Addison-Wesley Professional, Boston (2010)
Ge, J., Polhill, G.: Exploring the combined effect of factors influencing commuting patterns and CO2 emissions in Aberdeen using an agent-based model. J. Artif. Soc. Soc. Simul. 19(3) (2016)
Grey, R.: Agent Tcl: a transportable agent system. In: Proceedings of the CIKM Workshop on Intelligent Information Agents, Fourth International Conference on Information and Knowledge Management (CIKM 1995) (1995)
Grignard, A., Taillandier, P., Gaudou, B., Vo, D.A., Huynh, N.Q., Drogoul, A.: Gama 1.6: advancing the art of complex agent-based modeling and simulation. In International Conference on Principles and Practice of Multi-agent Systems, pp. 117–131 (2013)
Hassan, S., Fuentes-Fernández, R., Galán, J.M., López-Paredes, A., Pavón, J.: Reducing the modeling gap: on the use of metamodels in agent-based simulation. In: 6th Conference of the European Social Simulation Association (ESSA 2009), pp. 1–13 (2009)
Hermans, F., Pinzger, M., van Deursen, A.: Domain-specific languages in practice: a user study on the success factors. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 423–437. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04425-0_33
Horni, A., Nagel, K., Axhausen, K.W.: The Multi-Agent Transport Simulation MATSim. Ubiquity Press, London (2016). https://doi.org/10.5334/baw
North, M.J., Macal, C.M.: Agents up close. In: North, M.J., Macal, C.M. (eds.) Managing Business Complexity, pp. 24–44. Oxford University Press, Oxford (2007)
Joppa, L.N., McInerny, G., Harper, R., Salido, L., Takeda, K., O’hara, K., Gavaghan, D., Emmott, S.: Troubling trends in scientific software use. Science 340(6134), 814–815 (2013)
Kardoš, M., Drozdová, M.: Analytical method of CIM to PIM transformation in model driven architecture (MDA). J. Inf. Org. Sci. 34(1), 89–99 (2010)
Kosar, T., Bohra, S., Mernik, M.: Domain-specific languages: a systematic mapping study. Inf. Softw. Technol. 71, 77–91 (2016)
Kosar, T., Mernik, M., Carver, J.C.: Program comprehension of domain-specific and general-purpose languages: comparison using a family of experiments. Emp. Softw. Eng. 17(3), 276–304 (2012)
Lu, R., Jin, Z.: Domain Modeling-based Software Engineering: A Formal Approach, vol. 8, p. 123. Springer, New York (2000). https://doi.org/10.1007/978-1-4615-4487-6
North, M.J., Macal, C.M.: Agent based modeling and computer languages. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 131–148. Springer, New York (2009). https://doi.org/10.1007/978-0-387-30440-3_8
Palmer, R.G., Arthur, W.B., Holland, J.H., LeBaron, B.: An artificial stock market. Artif. Life Robot. 3(1), 27–31 (1999)
Parry, H.R.: Agent based modeling, large scale simulations. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 148–160. Springer, New York (2009). https://doi.org/10.1007/978-0-387-30440-3_9
Pavon, J., Gomez-Sanz, J.J., Fuentes, R.: The INGENIAS methodology and tools. In: Henderson-Sellers, B., Giorgini, P. (eds.) Agent-Oriented Methodologies, pp. 236–276. IGI Global, Hershey (2005)
Samuelson, P.A.: Tragedy of the open road: avoiding paradox by use of regulated public utilities that charge corrected knightian tolls. J. Int. Comp. Econ. 1(1), 3–12 (1992)
Sansores, C., Pavón, J.: Agent-based simulation replication: a model driven architecture approach. In: Gelbukh, A., de Albornoz, Á., Terashima-Marín, H. (eds.) MICAI 2005. LNCS (LNAI), vol. 3789, pp. 244–253. Springer, Heidelberg (2005). https://doi.org/10.1007/11579427_25
Segal, J.: Software development cultures and cooperation problems: a field study of the early stages of development of software for a scientific community. Comput. Support. Coop. Work (CSCW) 18(5), 581 (2009)
Touraille, L., Traoré, M.K., Hill, D.R.C., A model-driven software environment for modeling, simulation and analysis of complex systems. In: Proceedings of the 2011 Symposium on Theory of Modeling & Simulation: DEVS Integrative M&S Symposium, TMS-DEVS 2011, pp. 229–237. Society for Computer Simulation International, San Diego (2011)
Vendrov, I., Dutchyn, C., Osgood, N.D.: Frabjous: a declarative domain-specific language for agent-based modeling. In: Kennedy, W.G., Agarwal, N., Yang, S.J. (eds.) SBP 2014. LNCS, vol. 8393, pp. 385–392. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05579-4_47
Wilensky, U.: Netlogo. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL (1999). http://ccl.northwestern.edu/netlogo/
Xiang, X., Kennedy, R., Madey, G., Cabaniss, S.: Verification and validation of agent-based scientific simulation models. In: Agent-Directed Simulation Conference, pp. 47–55 (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Hoffmann, B., Chalmers, K., Urquhart, N., Farrenkopf, T., Guckert, M. (2018). Towards Reducing Complexity of Multi-agent Simulations by Applying Model-Driven Techniques. In: Demazeau, Y., An, B., Bajo, J., Fernández-Caballero, A. (eds) Advances in Practical Applications of Agents, Multi-Agent Systems, and Complexity: The PAAMS Collection. PAAMS 2018. Lecture Notes in Computer Science(), vol 10978. Springer, Cham. https://doi.org/10.1007/978-3-319-94580-4_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-94580-4_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-94579-8
Online ISBN: 978-3-319-94580-4
eBook Packages: Computer ScienceComputer Science (R0)