Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10978))

  • 1565 Accesses

Abstract

In the coming years, ensuring the electricity supply will be one of the most important world challenges. Renewable energies, in particular wind energy, are an alternative to non-sustainable resources thanks to their almost unlimited supply. However, the chaotic nature and the variability of the wind represent a significant barrier to a large-scale development of this energy. Consequently, providing accurate wind power forecasts is a crucial challenge. This paper presents AMAWind, a multi-agent system dedicated to wind power forecasting based on a cooperative approach. Each agent corresponds to a turbine at a given hour, it starts from an initial production forecast and acts in a cooperative way with its neighbors to find an equilibrium on conflicting values. An assessment of this approach was carried out on data coming from a real wind farm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bernon, C., Gleizes, M.-P., Peyruqueou, S., Picard, G.: ADELFE: a methodology for adaptive multi-agent systems engineering. In: Petta, P., Tolksdorf, R., Zambonelli, F. (eds.) ESAW 2002. LNCS (LNAI), vol. 2577, pp. 156–169. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39173-8_12

    Chapter  MATH  Google Scholar 

  2. Boes, J., Migeon, F.: Self-organizing multi-agent systems for the control of complex systems. J. Syst. Softw. 134, 12–28 (2017)

    Article  Google Scholar 

  3. Browell, J., Gilbert, C., McMillan, D.: Use of turbine-level data for improved wind power forecasting. In: 2017 IEEE Manchester PowerTech, pp. 1–6 (2017)

    Google Scholar 

  4. Burton, T., Jenkins, N., Sharpe, D., Bossanyi, E.: Wind Energy Handbook. Wiley, Hoboken (2011)

    Book  Google Scholar 

  5. Capera, D., Georgé, J.P., Gleizes, M.P., Glize, P.: The AMAS theory for complex problem solving based on self-organizing cooperative agents. In: 12th IEEE International Workshops on Enabling Technologies, Infrastructure for Collaborative Enterprises, Linz, Austria, pp. 383–388. IEEE Computer Society (2003)

    Google Scholar 

  6. Dickerson, M.T., Drysdale, R.S.: Fixed-radius near neighbors search algorithms for points and segments. Inf. Process. Lett. 35(5), 269–273 (1990)

    Article  MathSciNet  Google Scholar 

  7. Georgé, J.P., Gleizes, M.P., Camps, V.: Cooperation. In: Di Marzo Serugendo, G., Gleizes, M.P., Karageorgos, A. (eds.) Self-organising Software: From Natural to Artificial Adaptation, pp. 193–226. Springer, Cham (2011). https://doi.org/10.1007/978-3-642-17348-6

    Chapter  Google Scholar 

  8. Giebel, G., Brownsword, R., Kariniotakis, G., Denhard, M., Draxl, C.: The state-of-the-art in short-term prediction of wind power: a literature overview. Technical report, ANEMOS.plus (2011)

    Google Scholar 

  9. Giebel, G., Cline, J., Frank, H., Shaw, W., Pinson, P., Hodge, B.M., Kariniotakis, G., Madsen, J., Möhrlen, C.: Wind power forecasting: IEA Wind Task 36 & future research issues. J. Phys.: Conf. Ser. 753, 032042 (2016)

    Google Scholar 

  10. Guivarch, V., Bernon, C., Gleizes, M.P.: Power optimization by cooling photovoltaic plants as a dynamic self-adaptive regulation problem. In: International Conference on Agents and Artificial Intelligence (ICAART), vol. 1, pp. 276–281. SciTePress (2018)

    Google Scholar 

  11. Hong, T., Pinson, P., Fan, S.: Global Energy Forecasting Competition 2012 (2014)

    Article  Google Scholar 

  12. Hong, T., Pinson, P., Fan, S., Zareipour, H., Troccoli, A., Hyndman, R.J.: Probabilistic Energy Forecasting: Global Energy Forecasting Competition 2014 and Beyond (2016)

    Article  Google Scholar 

  13. Jung, J., Broadwater, R.P.: Current status and future advances for wind speed and power forecasting. Renew. Sustain. Energy Rev. 31, 762–777 (2014)

    Article  Google Scholar 

  14. Landry, M., Erlinger, T.P., Patschke, D., Varrichio, C.: Probabilistic gradient boosting machines for GEFCom2014 wind forecasting. Int. J. Forecast. 32(3), 1061–1066 (2016)

    Article  Google Scholar 

  15. Lydia, M., Kumar, S.S., Selvakumar, A.I., Kumar, G.E.P.: A comprehensive review on wind turbine power curve modeling techniques. Renew. Sustain. Energy Rev. 30, 452–460 (2014)

    Article  Google Scholar 

  16. Monteiro, C., Bessa, R., Miranda, V., Botterud, A., Wang, J., Conzelmann, G., et al.: Wind power forecasting: state-of-the-art 2009. Technical report, Argonne National Laboratory (ANL) (2009)

    Google Scholar 

  17. Nygaard, N.G.: Wakes in very large wind farms and the effect of neighbouring wind farms. J. Phys. Conf. Ser. 524(1), 012162 (2014)

    Article  Google Scholar 

  18. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12(10), 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Perles, A.: An adaptive multi-agent system for the distribution of intelligence in electrical distribution networks: state estimation. Ph.D. thesis, Université de Toulouse (2017)

    Google Scholar 

  20. Pinson, P.: Wind energy: forecasting challenges for its operational management. Stat. Sci. 28(4), 564–585 (2013)

    Article  MathSciNet  Google Scholar 

  21. Ramasamy, P., Chandel, S., Yadav, A.K.: Wind speed prediction in the mountainous region of India using an artificial neural network model. Renew. Energy 80, 338–347 (2015)

    Article  Google Scholar 

  22. Verstaevel, N.: Self-organization of robotic devices through demonstrations. Ph.D. thesis, Université de Toulouse (2016)

    Google Scholar 

  23. Wang, H., Li, G., Wang, G., Peng, J., Jiang, H., Liu, Y.: Deep learning based ensemble approach for probabilistic wind power forecasting. Appl. Energy 188, 56–70 (2017)

    Article  Google Scholar 

  24. Wind Observatory: Analysis of the wind power market, wind jobs and future of the wind industry in France. Technical report (2017)

    Google Scholar 

Download references

Acknowledgements

This work is part of the research project Meteo*Swift funded by the ERDF (European Regional Development Fund) of the European Union and the French Occitanie Region and supported by the ANRT (French National Association for Research and Technology). We would also like to thank the CNRM (French Weather Research Centre), our partner in this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanguy Esteoule .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Esteoule, T., Perles, A., Bernon, C., Gleizes, MP., Barthod, M. (2018). A Cooperative Multi-Agent System for Wind Power Forecasting. In: Demazeau, Y., An, B., Bajo, J., Fernández-Caballero, A. (eds) Advances in Practical Applications of Agents, Multi-Agent Systems, and Complexity: The PAAMS Collection. PAAMS 2018. Lecture Notes in Computer Science(), vol 10978. Springer, Cham. https://doi.org/10.1007/978-3-319-94580-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94580-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94579-8

  • Online ISBN: 978-3-319-94580-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics