Skip to main content

Classification of Spatio-Temporal Trajectories Based on Support Vector Machines

  • Conference paper
  • First Online:
Advances in Practical Applications of Agents, Multi-Agent Systems, and Complexity: The PAAMS Collection (PAAMS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10978))

  • 1538 Accesses

Abstract

Within the mobility mining discipline, several solutions for the classification of spatio-temporal trajectories have been proposed. However, they usually do not fully consider the particularities of trajectories from human-generated data like online social networks. For that reason, this work introduces a novel classifier based on Support Vector Machines (SVM), which fits the low resolution of this type of geographic data. This solution is applied in a use case for the detection of tourist mobility exhibiting quite promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://twitter.com/.

  2. 2.

    https://www.facebook.com/.

  3. 3.

    https://www.flickr.com/.

  4. 4.

    http://www.openstreetmap.org/.

References

  1. Bellavista, P., Montanari, R., Das, S.K.: Mobile social networking middleware: a survey. Pervasive Mob. Comput. 9(4), 437–453 (2013)

    Article  Google Scholar 

  2. Renso, C., Stefano Spaccapietra, E.Z.: Mobility Data - Modeling, Management, and Understanding. Cambridge University Press, Cambridge (2013)

    Book  Google Scholar 

  3. Comito, C., Falcone, D., Talia, D.: Mining human mobility patterns from social geo-tagged data. Pervasive Mob. Comput. 33, 91–107 (2016)

    Article  Google Scholar 

  4. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. KDD 96, 226–231 (1996)

    Google Scholar 

  5. Girardin, F., Calabrese, F., Fiore, F.D., Ratti, C., Blat, J.: Digital footprinting: uncovering tourists with user-generated content. IEEE Pervasive Comput. 7(4), 36–43 (2008)

    Article  Google Scholar 

  6. Han, J., Lee, H.: Adaptive landmark recommendations for travel planning: personalizing and clustering landmarks using geo-tagged social media. Pervasive Mob. Comput. 18, 4–17 (2015)

    Article  Google Scholar 

  7. Hu, Y., Gao, S., Janowicz, K., Yu, B., Li, W., Prasad, S.: Extracting and understanding urban areas of interest using geotagged photos. Comput. Environ. Urban Syst. 54, 240–254 (2015)

    Article  Google Scholar 

  8. Lee, J.G., Han, J., Li, X.: Trajectory outlier detection: a partition-and-detect framework. In: 2008 IEEE 24th International Conference on Data Engineering, pp. 140–149, April 2008

    Google Scholar 

  9. Lee, J.G., Han, J., Li, X., Gonzalez, H.: Traclass: trajectory classification using hierarchical region-based and trajectory-based clustering. Proc. VLDB Endow. 1(1), 1081–1094 (2008)

    Article  Google Scholar 

  10. Lee, J.G., Han, J., Whang, K.Y.: Trajectory clustering: a partition-and-group framework. In: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, SIGMOD 2007, pp. 593–604. ACM, New York (2007)

    Google Scholar 

  11. Li, X., Han, J., Lee, J.-G., Gonzalez, H.: Traffic density-based discovery of hot routes in road networks. In: Papadias, D., Zhang, D., Kollios, G. (eds.) SSTD 2007. LNCS, vol. 4605, pp. 441–459. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73540-3_25

    Chapter  Google Scholar 

  12. Pelekis, N., Theodoridis, Y.: Mobility data mining and knowledge discovery. In: Pelekis, N., Theodoridis, Y. (eds.) Mobility Data Management and Exploration, pp. 143–167. Springer, New York (2014). https://doi.org/10.1007/978-1-4939-0392-4_7

    Chapter  Google Scholar 

  13. Suykens, J.A., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)

    Article  Google Scholar 

  14. Terroso-Sáenz, F., Cuenca-Jara, J., González-Vidal, A., Skarmeta, A.F.: Human mobility prediction based on social media with complex event processing. Int. J. Distrib. Sens. Netw. 12(9), 5836392 (2016)

    Article  Google Scholar 

  15. Thomee, B., Shamma, D.A., Friedland, G., Elizalde, B., Ni, K., Poland, D., Borth, D., Li, L.J.: YFCC100M: the new data in multimedia research. Commun. ACM 59(2), 64–73 (2016)

    Article  Google Scholar 

  16. Zheng, Y.: Trajectory data mining: an overview. ACM Trans. Intell. Syst. Technol. 6(3), 29:1–29:41 (2015)

    Article  Google Scholar 

  17. Zheng, Y., Li, Q., Chen, Y., Xie, X., Ma, W.Y.: Understanding mobility based on GPS data. In: Proceedings of the 10th International Conference on Ubiquitous Computing, UbiComp 2008, pp. 312–321. ACM, New York (2008)

    Google Scholar 

  18. Zheng, Y., Xie, X.: Learning travel recommendations from user-generated GPS traces. ACM Trans. Intell. Syst. Technol. 2(1), 2:1–2:29 (2011)

    Article  Google Scholar 

  19. Zhu, Y., Zheng, Y., Zhang, L., Santani, D., Xie, X., Yang, Q.: Inferring taxi status using GPS trajectories. Technical report, May 2012. arXiv:1205.4378

Download references

Acknowledgements

This work has been sponsored by the Spanish Ministry of Economy and Competitiveness through the PERSEIDES project (contract TIN2017-86885-R) and by the European Union under the framework of the H2020 IoTCrawler project (contract 779852).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramon Sanchez-Iborra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cuenca-Jara, J., Terroso-Saenz, F., Sanchez-Iborra, R., Skarmeta-Gomez, A.F. (2018). Classification of Spatio-Temporal Trajectories Based on Support Vector Machines. In: Demazeau, Y., An, B., Bajo, J., Fernández-Caballero, A. (eds) Advances in Practical Applications of Agents, Multi-Agent Systems, and Complexity: The PAAMS Collection. PAAMS 2018. Lecture Notes in Computer Science(), vol 10978. Springer, Cham. https://doi.org/10.1007/978-3-319-94580-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94580-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94579-8

  • Online ISBN: 978-3-319-94580-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics