Skip to main content

Skeletal Involvement in Alagille Syndrome

  • Chapter
  • First Online:
Alagille Syndrome

Abstract

Alagille syndrome results in a spectrum of skeletal abnormalities in patients. Distinct facies are pathognomonic for the disease, and butterfly vertebrae are common. Patients have reduced bone mass and a propensity to fracture. While some of these abnormalities are developmental, others may be associated with alterations in nutrition (malabsorption) and systemic metabolism during growth. Emerging data demonstrate that Notch signaling and Jagged1 in particular have direct effects on adult bone cells. Activating Notch signaling with Jagged1 in human cells promotes osteoblast differentiation. However, data in genetically modified mice suggests that the regulation of Jagged1-Notch on the skeleton is complex, and Notch signaling may have variable effects depending on the site of the bone and the differentiation status of the target cell. Excitingly, the most recent work in the field demonstrates that delivery of Jagged1 bound to biomaterials promotes bone formation. This has broad implications for treating Alagille syndrome patients with acute fractures as well as treating patients with osteopenia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW, Rueger MA, Bae SK, Kittappa R, McKay RD. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature. 2006;442(7104):823–6.

    Article  CAS  Google Scholar 

  2. Argao EA, Specker BL, Heubi JE. Bone mineral content in infants and children with chronic cholestatic liver disease. Pediatrics. 1993;91(6):1151–4.

    CAS  PubMed  Google Scholar 

  3. Bai S, Kopan R, Zou W, Hilton MJ, Ong CT, Long F, Ross FP, Teitelbaum SL. NOTCH1 regulates osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblast lineage cells. J Biol Chem. 2008;283(10):6509–18.

    Article  CAS  Google Scholar 

  4. Bales CB, Kamath BM, Munoz PS, Nguyen A, Piccoli DA, Spinner NB, Horn D, Shults J, Leonard MB, Grimberg A, Loomes KM. Pathologic lower extremity fractures in children with Alagille syndrome. J Pediatr Gastroenterol Nutr. 2010;51(1):66–70.

    Article  Google Scholar 

  5. Canalis E. Notch signaling in osteoblasts. Sci Signal. 2008;1(17):pe17.

    Article  Google Scholar 

  6. Canalis E, Parker K, Feng JQ, Zanotti S. Osteoblast lineage-specific effects of notch activation in the skeleton. Endocrinology. 2013;154(2):623–34.

    Article  CAS  Google Scholar 

  7. Choi YH, Ann EJ, Yoon JH, Mo JS, Kim MY, Park HS. Calcium/calmodulin-dependent protein kinase IV (CaMKIV) enhances osteoclast differentiation via the up-regulation of Notch1 protein stability. Biochim Biophys Acta. 2013;1833(1):69–79.

    Article  CAS  Google Scholar 

  8. Dishowitz MI, Terkhorn SP, Bostic SA, Hankenson KD. Notch signaling components are upregulated during both endochondral and intramembranous bone regeneration. J Orthop Res. 2012;30(2):296–303.

    Article  CAS  Google Scholar 

  9. Dishowitz MI, Mutyaba PL, Takacs JD, Barr AM, Engiles JB, Ahn J, Hankenson KD. Systemic inhibition of canonical Notch signaling results in sustained callus inflammation and alters multiple phases of fracture healing. PLoS One. 2013;8(7):e68726.

    Article  CAS  Google Scholar 

  10. Dong Y, Jesse AM, Kohn A, Gunnell LM, Honjo T, Zuscik MJ, O'Keefe RJ, Hilton MJ. RBPjΰ-dependent Notch signaling regulates mesenchymal progenitor cell proliferation and differentiation during skeletal development. Development. 2010;137(9):1461–71.

    Article  CAS  Google Scholar 

  11. Duan L, de Vos P, Fan M, Ren Y. Notch is activated in RANKL-induced osteoclast differentiation and resorption. Front Biosci. 2008;13:7064–71.

    Article  CAS  Google Scholar 

  12. Elefteriou F, Yang X. Genetic mouse models for bone studies--strengths and limitations. Bone. 2011;49(6):1242–54.

    Article  CAS  Google Scholar 

  13. Emerick KM, Rand EB, Goldmuntz E, Krantz ID, Spinner NB, Piccoli DA. Features of Alagille syndrome in 92 patients: frequency and relation to prognosis. Hepatology. 1999;29(3):822–9. https://doi.org/10.1002/hep.510290331.

    Article  CAS  PubMed  Google Scholar 

  14. Feller J, Schneider A, Schuster-Gossler K, Gossler A. Noncyclic Notch activity in the presomitic mesoderm demonstrates uncoupling of somite compartmentalization and boundary formation. Genes Dev. 2008;22(16):2166–71.

    Article  CAS  Google Scholar 

  15. Feng X. RANKing intracellular signaling in osteoclasts. IUBMB Life. 2005;57(6):389–95.

    Article  CAS  Google Scholar 

  16. Fish JL. Developmental mechanisms underlying variation in craniofacial disease and evolution. Dev Biol. 2016;415(2):188–97. https://doi.org/10.1016/j.ydbio.2015.12.019.

    Article  CAS  PubMed  Google Scholar 

  17. Fukushima H, Nakao A, Okamoto F, Shin M, Kajiya H, Sakano S, Bigas A, Jimi E, Okabe K. The association of Notch2 and NF-kappaB accelerates RANKL-induced osteoclastogenesis. Mol Cell Biol. 2008;28(20):6402–12. https://doi.org/10.1128/MCB.00299-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hill CR, Yuasa M, Schoenecker J, Goudy SL. Jagged1 is essential for osteoblast development during maxillary ossification. Bone. 2014;62:10–21.

    Article  CAS  Google Scholar 

  19. Hoffenberg EJ, Narkewicz MR, Sondheimer JM, Smith DJ, Silverman A, Sokol RJ. Outcome of syndromic paucity of interlobular bile ducts (Alagille syndrome) with onset of cholestasis in infancy. J Pediatr. 1995;127(2):220–4.

    Article  CAS  Google Scholar 

  20. Hosaka Y, Saito T, Sugita S, Hikata T, Kobayashi H, Fukai A, Taniguchi Y, Hirata M, Akiyama H, Chung UI, Kawaguchi H. Notch signaling in chondrocytes modulates endochondral ossification and osteoarthritis development. Proc Natl Acad Sci U S A. 2013;110(5):1875–80.

    Article  CAS  Google Scholar 

  21. Humphreys R, Zheng W, Prince LS, Qu X, Brown C, Loomes K, Huppert SS, Baldwin S, Goudy S. Cranial neural crest ablation of Jagged1 recapitulates the craniofacial phenotype of Alagille syndrome patients. Hum Mol Genet. 2012;21(6):1374–83.

    Article  CAS  Google Scholar 

  22. Kamath BM, Loomes KM, Oakey RJ, Emerick KE, Conversano T, Spinner NB, Piccoli DA, Krantz ID. Facial features in Alagille syndrome: specific or cholestasis facies? Am J Med Genet. 2002a;112(2):163–70.

    Article  Google Scholar 

  23. Kamath BM, Loomes KM, Oakey RJ, Krantz ID. Supernumerary digital flexion creases: an additional clinical manifestation of Alagille syndrome. Am J Med Genet. 2002b;112(2):171–5.

    PubMed  Google Scholar 

  24. Kohn A, Dong Y, Mirando AJ, Jesse AM, Honjo T, Zuscik MJ, O'Keefe RJ, Hilton MJ. Cartilage-specific RBPjkappa-dependent and -independent Notch signals regulate cartilage and bone development. Development. 2012;139(6):1198–212.

    Article  CAS  Google Scholar 

  25. Lawal RA, Zhou X, Batey K, Hoffman CM, Georger MA, Radtke F, Hilton MJ, Xing L, Frisch BJ, Calvi LM. The notch ligand Jagged1 regulates the osteoblastic lineage by maintaining the osteoprogenitor pool. J Bone Miner Res. 2016;32(6):1320–31.

    Article  Google Scholar 

  26. Lewis J, Hanisch A, Holder M. Notch signaling, the segmentation clock, and the patterning of vertebrate somites. J Biol. 2009;8(4):44.

    Article  Google Scholar 

  27. Lin GL, Hankenson KD. Integration of BMP, Wnt, and notch signaling pathways in osteoblast differentiation. J Cell Biochem. 2011;112(12):3491–501.

    Article  CAS  Google Scholar 

  28. Lin HC, Le Hoang P, Hutchinson A, Chao G, Gerfen J, Loomes KM, Krantz I, Kamath BM, Spinner NB. Alagille syndrome in a Vietnamese cohort: mutation analysis and assessment of facial features. Am J Med Genet A. 2012;158a(5):1005–13.

    Article  Google Scholar 

  29. Liu P, Ping Y, Ma M, Zhang D, Liu C, Zaidi S, Gao S, Ji Y, Lou F, Yu F, Lu P, Stachnik A, Bai M, Wei C, Zhang L, Wang K, Chen R, New MI, Rowe DW, Yuen T, Sun L, Zaidi M. Anabolic actions of Notch on mature bone. Proc Natl Acad Sci U S A. 2016;113(15):E2152–61.

    Article  CAS  Google Scholar 

  30. Loomes KM, Spino C, Goodrich NP, Hangartner TN, Marker AE, Heubi JE, Kamath BM, Shneider B, Rosenthal P, Hertel PM, Karpen SJ, Kerkar N, Molleston JP, Murray KF, Schwarz KB, Teckman J, Turmelle YP, Whitington PF, Sherker AH, Maagee JC, Sokol RJ. DXA bone density in Alagille syndrome correlates with fracture history and degree of cholestasis. Hepatology. 2015;62(1):1034A.

    Google Scholar 

  31. Lu Z, Wu Z, Zhang Q, Wang H, Jia X, Duan H, Wang L. Notch signaling stimulates osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Chin Sci Bull. 2004;49(8):815–8.

    Article  CAS  Google Scholar 

  32. Mackie EJ, Ahmed YA, Tatarczuch L, Chen KS, Mirams M. Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol. 2008;40(1):46–62.

    Article  CAS  Google Scholar 

  33. Muguruma Y, Hozumi K, Warita H, Yahata T, Uno T, Ito M, Ando K. Maintenance of bone homeostasis by DLL1-mediated notch signaling. J Cell Physiol. 2017;232(9):2569–80.

    Article  CAS  Google Scholar 

  34. Oldershaw RA, Hardingham TE. Notch signaling during chondrogenesis of human bone marrow stem cells. Bone. 2010;46(2):286–93.

    Article  CAS  Google Scholar 

  35. Oldershaw RA, Tew SR, Russell AM, Meade K, Hawkins R, McKay TR, Brennan KR, Hardingham TE. Notch signaling through Jagged1 is necessary to initiate chondrogenesis in human bone marrow stromal cells but must be switched off to complete chondrogenesis. Stem Cells. 2008;26(3):666–74.

    Article  CAS  Google Scholar 

  36. Olsen IE, Ittenbach RF, Rovner AJ, Leonard MB, Mulberg AE, Stallings VA, Piccoli DA, Zemel BS. Deficits in size-adjusted bone mass in children with Alagille syndrome. J Pediatr Gastroenterol Nutr. 2005;40(1):76–82.

    Article  Google Scholar 

  37. Rowe PS, de Zoysa PA, Dong R, Wang HR, White KE, Econs MJ, Oudet CL. MEPE, a new gene expressed in bone marrow and tumors causing osteomalacia. Genomics. 2000;67(1):54–68.

    Article  CAS  Google Scholar 

  38. Runyan CM, Gabrick KS. Biology of bone formation, fracture healing, and distraction osteogenesis. J Craniofac Surg. 2017;28(5):1380–9.

    Article  Google Scholar 

  39. Ryan RS, Myckatyn SO, Reid GD, Munk P. Alagille syndrome: case report with bilateral radio-ulnar synostosis and a literature review. Skelet Radiol. 2003;32(8):489–91.

    Article  CAS  Google Scholar 

  40. Sanderson E, Newman V, Haigh SF, Baker A, Sidhu PS. Vertebral anomalies in children with Alagille syndrome: an analysis of 50 consecutive patients. Pediatr Radiol. 2002;32(2):114–9.

    Article  Google Scholar 

  41. Scaal M. Early development of the vertebral column. Semin Cell Dev Biol. 2016;49:83–91.

    Article  Google Scholar 

  42. Sekine C, Koyanagi A, Koyama N, Hozumi K, Chiba S, Yagita H. Differential regulation of osteoclastogenesis by Notch2/Delta-like 1 and Notch1/Jagged1 axes. Arthritis Res Ther. 2012;14(2):R45.

    Article  CAS  Google Scholar 

  43. Shindo K, Kawashima N, Sakamoto K, Yamaguchi A, Umezawa A, Takagi M, Katsube K, Suda H. Osteogenic differentiation of the mesenchymal progenitor cells, Kusa is suppressed by Notch signaling. Exp Cell Res. 2003;290(2):370–80.

    Article  CAS  Google Scholar 

  44. Sokol RJ, Heubi JE, Balistreri WF. Intrahepatic "cholestasis facies": is it specific for Alagille syndrome? J Pediatr. 1983;103(2):205–8.

    Article  CAS  Google Scholar 

  45. Szabo-Rogers HL, Smithers LE, Yakob W, Liu KJ. New directions in craniofacial morphogenesis. Dev Biol. 2010;341(1):84–94.

    Article  CAS  Google Scholar 

  46. Teitelbaum SL. Osteoclasts: what do they do and how do they do it? Am J Pathol. 2007;170(2):427–35.

    Article  CAS  Google Scholar 

  47. Teng CS, Yen HY, Barske L, Smith B, Llamas J, Segil N, Go J, Sanchez-Lara PA, Maxson RE, Crump JG. Requirement for Jagged1-Notch2 signaling in patterning the bones of the mouse and human middle ear. Sci Rep. 2017;7(1):2497.

    Article  Google Scholar 

  48. Turnpenny PD, Alman B, Cornier AS, Giampietro PF, Offiah A, Tassy O, Pourquie O, Kusumi K, Dunwoodie S. Abnormal vertebral segmentation and the notch signaling pathway in man. Dev Dyn. 2007;236(6):1456–74.

    Article  CAS  Google Scholar 

  49. Wang C, Inzana JA, Mirando AJ, Ren Y, Liu Z, Shen J, O'Keefe RJ, Awad HA, Hilton MJ. NOTCH signaling in skeletal progenitors is critical for fracture repair. J Clin Invest. 2016;126(4):1471–81.

    Article  Google Scholar 

  50. Xu N, Liu H, Qu F, Fan J, Mao K, Yin Y, Liu J, Geng Z, Wang Y. Hypoxia inhibits the differentiation of mesenchymal stem cells into osteoblasts by activation of Notch signaling. Exp Mol Pathol. 2013;94(1):33–9.

    Article  CAS  Google Scholar 

  51. Yamada T, Yamazaki H, Yamane T, Yoshino M, Okuyama H, Tsuneto M, Kurino T, Hayashi S, Sakano S. Regulation of osteoclast development by Notch signaling directed to osteoclast precursors and through stromal cells. Blood. 2003;101(6):2227–34.

    Article  CAS  Google Scholar 

  52. Youngstrom DW, Dishowitz MI, Bales CB, Carr E, Mutyaba PL, Kozloff KM, Shitaye H, Hankenson KD, Loomes KM. Jagged1 expression by osteoblast-lineage cells regulates trabecular bone mass and periosteal expansion in mice. Bone. 2016;91:64–74.

    Article  CAS  Google Scholar 

  53. Youngstrom DW, Senos R, Zondervan RL, Brodeur JD, Lints AR, Young DR, Mitchell TL, Moore ME, Myers MH, Tseng WJ, Loomes KM, Hankenson KD. Intraoperative delivery of the Notch ligand Jagged1 regenerates appendicular and craniofacial bone defects. NPJ Regen Med. 2017;2:32.

    Article  Google Scholar 

  54. Zhu F, Sweetwyne MT, Hankenson KD. PKCdelta is required for Jagged1 induction of human mesenchymal stem cell osteogenic differentiation. Stem Cells. 2013;31(6):1181–92.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kathleen M. Loomes or Kurt Hankenson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wagley, Y., Mitchell, T., Ashley, J., Loomes, K.M., Hankenson, K. (2018). Skeletal Involvement in Alagille Syndrome. In: Kamath, B., Loomes, K. (eds) Alagille Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-319-94571-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94571-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94570-5

  • Online ISBN: 978-3-319-94571-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics