Advertisement

Skeletal Involvement in Alagille Syndrome

  • Yadav Wagley
  • Troy Mitchell
  • Jason Ashley
  • Kathleen M. LoomesEmail author
  • Kurt HankensonEmail author
Chapter

Abstract

Alagille syndrome results in a spectrum of skeletal abnormalities in patients. Distinct facies are pathognomonic for the disease, and butterfly vertebrae are common. Patients have reduced bone mass and a propensity to fracture. While some of these abnormalities are developmental, others may be associated with alterations in nutrition (malabsorption) and systemic metabolism during growth. Emerging data demonstrate that Notch signaling and Jagged1 in particular have direct effects on adult bone cells. Activating Notch signaling with Jagged1 in human cells promotes osteoblast differentiation. However, data in genetically modified mice suggests that the regulation of Jagged1-Notch on the skeleton is complex, and Notch signaling may have variable effects depending on the site of the bone and the differentiation status of the target cell. Excitingly, the most recent work in the field demonstrates that delivery of Jagged1 bound to biomaterials promotes bone formation. This has broad implications for treating Alagille syndrome patients with acute fractures as well as treating patients with osteopenia.

Keywords

Craniofacial Vertebrae Osteoblast Chondrocyte Fracture Osteoporosis 

References

  1. 1.
    Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW, Rueger MA, Bae SK, Kittappa R, McKay RD. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature. 2006;442(7104):823–6.CrossRefGoogle Scholar
  2. 2.
    Argao EA, Specker BL, Heubi JE. Bone mineral content in infants and children with chronic cholestatic liver disease. Pediatrics. 1993;91(6):1151–4.PubMedGoogle Scholar
  3. 3.
    Bai S, Kopan R, Zou W, Hilton MJ, Ong CT, Long F, Ross FP, Teitelbaum SL. NOTCH1 regulates osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblast lineage cells. J Biol Chem. 2008;283(10):6509–18.CrossRefGoogle Scholar
  4. 4.
    Bales CB, Kamath BM, Munoz PS, Nguyen A, Piccoli DA, Spinner NB, Horn D, Shults J, Leonard MB, Grimberg A, Loomes KM. Pathologic lower extremity fractures in children with Alagille syndrome. J Pediatr Gastroenterol Nutr. 2010;51(1):66–70.CrossRefGoogle Scholar
  5. 5.
    Canalis E. Notch signaling in osteoblasts. Sci Signal. 2008;1(17):pe17.CrossRefGoogle Scholar
  6. 6.
    Canalis E, Parker K, Feng JQ, Zanotti S. Osteoblast lineage-specific effects of notch activation in the skeleton. Endocrinology. 2013;154(2):623–34.CrossRefGoogle Scholar
  7. 7.
    Choi YH, Ann EJ, Yoon JH, Mo JS, Kim MY, Park HS. Calcium/calmodulin-dependent protein kinase IV (CaMKIV) enhances osteoclast differentiation via the up-regulation of Notch1 protein stability. Biochim Biophys Acta. 2013;1833(1):69–79.CrossRefGoogle Scholar
  8. 8.
    Dishowitz MI, Terkhorn SP, Bostic SA, Hankenson KD. Notch signaling components are upregulated during both endochondral and intramembranous bone regeneration. J Orthop Res. 2012;30(2):296–303.CrossRefGoogle Scholar
  9. 9.
    Dishowitz MI, Mutyaba PL, Takacs JD, Barr AM, Engiles JB, Ahn J, Hankenson KD. Systemic inhibition of canonical Notch signaling results in sustained callus inflammation and alters multiple phases of fracture healing. PLoS One. 2013;8(7):e68726.CrossRefGoogle Scholar
  10. 10.
    Dong Y, Jesse AM, Kohn A, Gunnell LM, Honjo T, Zuscik MJ, O'Keefe RJ, Hilton MJ. RBPjΰ-dependent Notch signaling regulates mesenchymal progenitor cell proliferation and differentiation during skeletal development. Development. 2010;137(9):1461–71.CrossRefGoogle Scholar
  11. 11.
    Duan L, de Vos P, Fan M, Ren Y. Notch is activated in RANKL-induced osteoclast differentiation and resorption. Front Biosci. 2008;13:7064–71.CrossRefGoogle Scholar
  12. 12.
    Elefteriou F, Yang X. Genetic mouse models for bone studies--strengths and limitations. Bone. 2011;49(6):1242–54.CrossRefGoogle Scholar
  13. 13.
    Emerick KM, Rand EB, Goldmuntz E, Krantz ID, Spinner NB, Piccoli DA. Features of Alagille syndrome in 92 patients: frequency and relation to prognosis. Hepatology. 1999;29(3):822–9.  https://doi.org/10.1002/hep.510290331.CrossRefPubMedGoogle Scholar
  14. 14.
    Feller J, Schneider A, Schuster-Gossler K, Gossler A. Noncyclic Notch activity in the presomitic mesoderm demonstrates uncoupling of somite compartmentalization and boundary formation. Genes Dev. 2008;22(16):2166–71.CrossRefGoogle Scholar
  15. 15.
    Feng X. RANKing intracellular signaling in osteoclasts. IUBMB Life. 2005;57(6):389–95.CrossRefGoogle Scholar
  16. 16.
    Fish JL. Developmental mechanisms underlying variation in craniofacial disease and evolution. Dev Biol. 2016;415(2):188–97.  https://doi.org/10.1016/j.ydbio.2015.12.019.CrossRefPubMedGoogle Scholar
  17. 17.
    Fukushima H, Nakao A, Okamoto F, Shin M, Kajiya H, Sakano S, Bigas A, Jimi E, Okabe K. The association of Notch2 and NF-kappaB accelerates RANKL-induced osteoclastogenesis. Mol Cell Biol. 2008;28(20):6402–12.  https://doi.org/10.1128/MCB.00299-08.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hill CR, Yuasa M, Schoenecker J, Goudy SL. Jagged1 is essential for osteoblast development during maxillary ossification. Bone. 2014;62:10–21.CrossRefGoogle Scholar
  19. 19.
    Hoffenberg EJ, Narkewicz MR, Sondheimer JM, Smith DJ, Silverman A, Sokol RJ. Outcome of syndromic paucity of interlobular bile ducts (Alagille syndrome) with onset of cholestasis in infancy. J Pediatr. 1995;127(2):220–4.CrossRefGoogle Scholar
  20. 20.
    Hosaka Y, Saito T, Sugita S, Hikata T, Kobayashi H, Fukai A, Taniguchi Y, Hirata M, Akiyama H, Chung UI, Kawaguchi H. Notch signaling in chondrocytes modulates endochondral ossification and osteoarthritis development. Proc Natl Acad Sci U S A. 2013;110(5):1875–80.CrossRefGoogle Scholar
  21. 21.
    Humphreys R, Zheng W, Prince LS, Qu X, Brown C, Loomes K, Huppert SS, Baldwin S, Goudy S. Cranial neural crest ablation of Jagged1 recapitulates the craniofacial phenotype of Alagille syndrome patients. Hum Mol Genet. 2012;21(6):1374–83.CrossRefGoogle Scholar
  22. 22.
    Kamath BM, Loomes KM, Oakey RJ, Emerick KE, Conversano T, Spinner NB, Piccoli DA, Krantz ID. Facial features in Alagille syndrome: specific or cholestasis facies? Am J Med Genet. 2002a;112(2):163–70.CrossRefGoogle Scholar
  23. 23.
    Kamath BM, Loomes KM, Oakey RJ, Krantz ID. Supernumerary digital flexion creases: an additional clinical manifestation of Alagille syndrome. Am J Med Genet. 2002b;112(2):171–5.PubMedGoogle Scholar
  24. 24.
    Kohn A, Dong Y, Mirando AJ, Jesse AM, Honjo T, Zuscik MJ, O'Keefe RJ, Hilton MJ. Cartilage-specific RBPjkappa-dependent and -independent Notch signals regulate cartilage and bone development. Development. 2012;139(6):1198–212.CrossRefGoogle Scholar
  25. 25.
    Lawal RA, Zhou X, Batey K, Hoffman CM, Georger MA, Radtke F, Hilton MJ, Xing L, Frisch BJ, Calvi LM. The notch ligand Jagged1 regulates the osteoblastic lineage by maintaining the osteoprogenitor pool. J Bone Miner Res. 2016;32(6):1320–31.CrossRefGoogle Scholar
  26. 26.
    Lewis J, Hanisch A, Holder M. Notch signaling, the segmentation clock, and the patterning of vertebrate somites. J Biol. 2009;8(4):44.CrossRefGoogle Scholar
  27. 27.
    Lin GL, Hankenson KD. Integration of BMP, Wnt, and notch signaling pathways in osteoblast differentiation. J Cell Biochem. 2011;112(12):3491–501.CrossRefGoogle Scholar
  28. 28.
    Lin HC, Le Hoang P, Hutchinson A, Chao G, Gerfen J, Loomes KM, Krantz I, Kamath BM, Spinner NB. Alagille syndrome in a Vietnamese cohort: mutation analysis and assessment of facial features. Am J Med Genet A. 2012;158a(5):1005–13.CrossRefGoogle Scholar
  29. 29.
    Liu P, Ping Y, Ma M, Zhang D, Liu C, Zaidi S, Gao S, Ji Y, Lou F, Yu F, Lu P, Stachnik A, Bai M, Wei C, Zhang L, Wang K, Chen R, New MI, Rowe DW, Yuen T, Sun L, Zaidi M. Anabolic actions of Notch on mature bone. Proc Natl Acad Sci U S A. 2016;113(15):E2152–61.CrossRefGoogle Scholar
  30. 30.
    Loomes KM, Spino C, Goodrich NP, Hangartner TN, Marker AE, Heubi JE, Kamath BM, Shneider B, Rosenthal P, Hertel PM, Karpen SJ, Kerkar N, Molleston JP, Murray KF, Schwarz KB, Teckman J, Turmelle YP, Whitington PF, Sherker AH, Maagee JC, Sokol RJ. DXA bone density in Alagille syndrome correlates with fracture history and degree of cholestasis. Hepatology. 2015;62(1):1034A.Google Scholar
  31. 31.
    Lu Z, Wu Z, Zhang Q, Wang H, Jia X, Duan H, Wang L. Notch signaling stimulates osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Chin Sci Bull. 2004;49(8):815–8.CrossRefGoogle Scholar
  32. 32.
    Mackie EJ, Ahmed YA, Tatarczuch L, Chen KS, Mirams M. Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol. 2008;40(1):46–62.CrossRefGoogle Scholar
  33. 33.
    Muguruma Y, Hozumi K, Warita H, Yahata T, Uno T, Ito M, Ando K. Maintenance of bone homeostasis by DLL1-mediated notch signaling. J Cell Physiol. 2017;232(9):2569–80.CrossRefGoogle Scholar
  34. 34.
    Oldershaw RA, Hardingham TE. Notch signaling during chondrogenesis of human bone marrow stem cells. Bone. 2010;46(2):286–93.CrossRefGoogle Scholar
  35. 35.
    Oldershaw RA, Tew SR, Russell AM, Meade K, Hawkins R, McKay TR, Brennan KR, Hardingham TE. Notch signaling through Jagged1 is necessary to initiate chondrogenesis in human bone marrow stromal cells but must be switched off to complete chondrogenesis. Stem Cells. 2008;26(3):666–74.CrossRefGoogle Scholar
  36. 36.
    Olsen IE, Ittenbach RF, Rovner AJ, Leonard MB, Mulberg AE, Stallings VA, Piccoli DA, Zemel BS. Deficits in size-adjusted bone mass in children with Alagille syndrome. J Pediatr Gastroenterol Nutr. 2005;40(1):76–82.CrossRefGoogle Scholar
  37. 37.
    Rowe PS, de Zoysa PA, Dong R, Wang HR, White KE, Econs MJ, Oudet CL. MEPE, a new gene expressed in bone marrow and tumors causing osteomalacia. Genomics. 2000;67(1):54–68.CrossRefGoogle Scholar
  38. 38.
    Runyan CM, Gabrick KS. Biology of bone formation, fracture healing, and distraction osteogenesis. J Craniofac Surg. 2017;28(5):1380–9.CrossRefGoogle Scholar
  39. 39.
    Ryan RS, Myckatyn SO, Reid GD, Munk P. Alagille syndrome: case report with bilateral radio-ulnar synostosis and a literature review. Skelet Radiol. 2003;32(8):489–91.CrossRefGoogle Scholar
  40. 40.
    Sanderson E, Newman V, Haigh SF, Baker A, Sidhu PS. Vertebral anomalies in children with Alagille syndrome: an analysis of 50 consecutive patients. Pediatr Radiol. 2002;32(2):114–9.CrossRefGoogle Scholar
  41. 41.
    Scaal M. Early development of the vertebral column. Semin Cell Dev Biol. 2016;49:83–91.CrossRefGoogle Scholar
  42. 42.
    Sekine C, Koyanagi A, Koyama N, Hozumi K, Chiba S, Yagita H. Differential regulation of osteoclastogenesis by Notch2/Delta-like 1 and Notch1/Jagged1 axes. Arthritis Res Ther. 2012;14(2):R45.CrossRefGoogle Scholar
  43. 43.
    Shindo K, Kawashima N, Sakamoto K, Yamaguchi A, Umezawa A, Takagi M, Katsube K, Suda H. Osteogenic differentiation of the mesenchymal progenitor cells, Kusa is suppressed by Notch signaling. Exp Cell Res. 2003;290(2):370–80.CrossRefGoogle Scholar
  44. 44.
    Sokol RJ, Heubi JE, Balistreri WF. Intrahepatic "cholestasis facies": is it specific for Alagille syndrome? J Pediatr. 1983;103(2):205–8.CrossRefGoogle Scholar
  45. 45.
    Szabo-Rogers HL, Smithers LE, Yakob W, Liu KJ. New directions in craniofacial morphogenesis. Dev Biol. 2010;341(1):84–94.CrossRefGoogle Scholar
  46. 46.
    Teitelbaum SL. Osteoclasts: what do they do and how do they do it? Am J Pathol. 2007;170(2):427–35.CrossRefGoogle Scholar
  47. 47.
    Teng CS, Yen HY, Barske L, Smith B, Llamas J, Segil N, Go J, Sanchez-Lara PA, Maxson RE, Crump JG. Requirement for Jagged1-Notch2 signaling in patterning the bones of the mouse and human middle ear. Sci Rep. 2017;7(1):2497.CrossRefGoogle Scholar
  48. 48.
    Turnpenny PD, Alman B, Cornier AS, Giampietro PF, Offiah A, Tassy O, Pourquie O, Kusumi K, Dunwoodie S. Abnormal vertebral segmentation and the notch signaling pathway in man. Dev Dyn. 2007;236(6):1456–74.CrossRefGoogle Scholar
  49. 49.
    Wang C, Inzana JA, Mirando AJ, Ren Y, Liu Z, Shen J, O'Keefe RJ, Awad HA, Hilton MJ. NOTCH signaling in skeletal progenitors is critical for fracture repair. J Clin Invest. 2016;126(4):1471–81.CrossRefGoogle Scholar
  50. 50.
    Xu N, Liu H, Qu F, Fan J, Mao K, Yin Y, Liu J, Geng Z, Wang Y. Hypoxia inhibits the differentiation of mesenchymal stem cells into osteoblasts by activation of Notch signaling. Exp Mol Pathol. 2013;94(1):33–9.CrossRefGoogle Scholar
  51. 51.
    Yamada T, Yamazaki H, Yamane T, Yoshino M, Okuyama H, Tsuneto M, Kurino T, Hayashi S, Sakano S. Regulation of osteoclast development by Notch signaling directed to osteoclast precursors and through stromal cells. Blood. 2003;101(6):2227–34.CrossRefGoogle Scholar
  52. 52.
    Youngstrom DW, Dishowitz MI, Bales CB, Carr E, Mutyaba PL, Kozloff KM, Shitaye H, Hankenson KD, Loomes KM. Jagged1 expression by osteoblast-lineage cells regulates trabecular bone mass and periosteal expansion in mice. Bone. 2016;91:64–74.CrossRefGoogle Scholar
  53. 53.
    Youngstrom DW, Senos R, Zondervan RL, Brodeur JD, Lints AR, Young DR, Mitchell TL, Moore ME, Myers MH, Tseng WJ, Loomes KM, Hankenson KD. Intraoperative delivery of the Notch ligand Jagged1 regenerates appendicular and craniofacial bone defects. NPJ Regen Med. 2017;2:32.CrossRefGoogle Scholar
  54. 54.
    Zhu F, Sweetwyne MT, Hankenson KD. PKCdelta is required for Jagged1 induction of human mesenchymal stem cell osteogenic differentiation. Stem Cells. 2013;31(6):1181–92.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Orthopaedic SurgeryUniversity of Michigan Medical SchoolAnn ArborUSA
  2. 2.Department of BiologyEastern Washington UniversityCheneyUSA
  3. 3.Department of Pediatrics, Division of Gastroenterology, Hepatology and NutritionThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA
  4. 4.Department of PediatricsChildren’s Hospital of Philadelphia and Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations