Skip to main content

Future Therapeutic Approaches for Alagille Syndrome

  • Chapter
  • First Online:
Alagille Syndrome
  • 448 Accesses

Abstract

Disease phenomena in Alagille syndrome range from bile duct paucity to cardiac defects, kidney disease, and bone weakness. Current treatments focus on ensuring nutrition and managing symptoms such as pruritus and in some cases liver and/or heart transplantation. In this chapter, future potential therapies or cures for Alagille syndrome are discussed, as well as state-of-the-art systems for drug discovery.

Future potential strategies range from treatment of disease outcomes (replacing and/or repairing missing cells or organs with stem cells or bioengineered organs) to directly correcting the underlying Notch pathway dysregulation to ensure proper development of the organs to begin with (correcting hypomorphic Notch signaling). Drawing on recent advances in the field, this chapter describes Notch activation or inhibition peptides, gene manipulation techniques, advances in stem cell biology, and our improved understanding of endogenous reparative mechanisms. These putative therapeutic possibilities hold great potential for Alagille syndrome and are also highly translatable to other disease states in which the liver or heart is compromised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    Article  CAS  PubMed  Google Scholar 

  2. Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K. Induced pluripotent stem cells generated without viral integration. Science. 2008;322(5903):945–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. FUSAKI N, BAN H, NISHIYAMA A, SAEKI K, HASEGAWA M. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Japan Acad Ser B. 2009;85(8):348–62.

    Article  CAS  Google Scholar 

  4. Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science. 2008;322(5903):949–53.

    Article  CAS  PubMed  Google Scholar 

  5. Warren L, Manos PD, Ahfeldt T, Loh Y-H, Li H, Lau F, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell. 2010;7(5):618–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature. 2009;458(7239):771–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yusa K, Rad R, Takeda J, Bradley A. Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nat Methods. 2009;6(5):363–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hämäläinen R, et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature. 2009;458(7239):766–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science. 2013;341(6146):651–4.

    Article  CAS  PubMed  Google Scholar 

  10. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.

    Article  CAS  PubMed  Google Scholar 

  11. Aasen T, Raya A, Barrero MJ, Garreta E, Consiglio A, Gonzalez F, et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol. 2008;26(11):1276–84.

    Article  CAS  PubMed  Google Scholar 

  12. Maherali N, Ahfeldt T, Rigamonti A, Utikal J, Cowan C, Hochedlinger K. A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell. 2008;3(3):340–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Staerk J, Dawlaty MM, Gao Q, Maetzel D, Hanna J, Sommer CA, et al. Reprogramming of human peripheral blood cells to induced pluripotent stem cells. Cell Stem Cell. 2010;7(1):20–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhou T, Benda C, Dunzinger S, Huang Y, Ho JC, Yang J, et al. Generation of human induced pluripotent stem cells from urine samples. Nat Protoc. 2012;7(12):2080–9.

    Article  CAS  PubMed  Google Scholar 

  15. Polo JM, Liu S, Figueroa ME, Kulalert W, Eminli S, Tan KY, et al. Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol. 2010;28(8):848–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Saini N, Roberts SA, Klimczak LJ, Chan K, Grimm SA, Dai S, et al. The Impact of Environmental and Endogenous Damage on Somatic Mutation Load in Human Skin Fibroblasts. Taylor M, editor. PLOS Genet. 2016;12(10):e1006385.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Peterson SE, Loring JF. Genomic instability in pluripotent stem cells: implications for clinical applications. J Biol Chem. 2014;289(8):4578–84.

    Article  CAS  PubMed  Google Scholar 

  18. Loukogeorgakis SP, De Coppi P. Concise review: amniotic fluid stem cells: the known, the unknown, and potential regenerative medicine applications. Stem Cells. 2017;35(7):1663–73.

    Article  PubMed  Google Scholar 

  19. De Coppi P, Bartsch G, Siddiqui MM, Xu T, Santos CC, Perin L, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol. 2007;25(1):100–6.

    Article  PubMed  CAS  Google Scholar 

  20. Velasquez-Mao AJ, Tsao CJM, Monroe MN, Legras X, Bissig-Choisat B, Bissig K-D, et al. Differentiation of spontaneously contracting cardiomyocytes from non-virally reprogrammed human amniotic fluid stem cells. Cooney AJ, editor. PLoS One. 2017;12(5):e0177824.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Moschidou D, Mukherjee S, Blundell MP, Jones GN, Atala AJ, Thrasher AJ, et al. Human mid-trimester amniotic fluid stem cells cultured under embryonic stem cell conditions with valproic acid acquire pluripotent characteristics. Stem Cells Dev. 2013;22(3):444–58.

    Article  CAS  PubMed  Google Scholar 

  22. Davis JW. Skin transplantation with a review of 550 cases at the Johns Hopkins Hospital. Johns Hopkins Med J. 1910;15:307–10.

    Google Scholar 

  23. Strom SC, Gramignoli R. Human amnion epithelial cells expressing HLA-G as novel cell-based treatment for liver disease. Hum Immunol. 2016;77(9):734–9.

    Article  CAS  PubMed  Google Scholar 

  24. Akle CA, Adinolfi M, Welsh KI, Leibowitz S, McColl I. Immunogenicity of human amniotic epithelial cells after transplantation into volunteers. Lancet. 1981;2(8254):1003–5.

    Article  CAS  PubMed  Google Scholar 

  25. Marongiu M, Serra MP, Contini A, Sini M, Strom SC, Laconi E, et al. Rat-derived amniotic epithelial cells differentiate into mature hepatocytes in vivo with no evidence of cell fusion. Stem Cells Dev. 2015;24(12):1429–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gluckman E, Broxmeyer HE, Auerbach AD, et al. Hematopoietic reconstitution in a patient with Fanconi’s animia by means of umbilical cord blood from an HLA-identical sibling. N Engl J Med. 1989;312(17):1174–8.

    Article  Google Scholar 

  27. Munoz J, Shah N, Rezvani K, Hosing C, Bollard CM, Oran B, et al. Concise review: umbilical cord blood transplantation: past, present, and future. Stem Cells Transl Med. 2014;3(12):1435–43.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Armitage S. Cord blood banking standards: autologous versus altruistic. Front Med. 2016;2:94.

    Article  Google Scholar 

  29. McDonald CA, Fahey MC, Jenkin G, Miller SL. Umbilical cord blood cells for treatment of cerebral palsy; timing and treatment options. Pediatr Res. 2018;83(1–2):333–44.

    Article  CAS  PubMed  Google Scholar 

  30. Haase A, Olmer R, Schwanke K, Wunderlich S, Merkert S, Hess C, et al. Generation of induced pluripotent stem cells from human cord blood. Cell Stem Cell. 2009;5(4):434–41.

    Article  CAS  PubMed  Google Scholar 

  31. Giorgetti A, Montserrat N, Aasen T, Gonzalez F, Rodríguez-Pizà I, Vassena R, et al. Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2. Cell Stem Cell. 2009;5(4):353–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ferraro F, Celso CL, Scadden D. Adult stem cels and their niches. Adv Exp Med Biol. 2010;695:155–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Eschenhagen T, Bolli R, Braun T, Field LJ, Fleischmann BK, Frisén J, et al. Cardiomyocyte regeneration: a consensus statement. Circulation. 2017;136(7):680–6.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hindley CJ, Cordero-Espinoza L, Huch M. Organoids from adult liver and pancreas: stem cell biology and biomedical utility. Dev Biol. 2016;420(2):251–61.

    Article  CAS  PubMed  Google Scholar 

  35. Ridola L, Bragazzi MC, Cardinale V, Carpino G, Gaudio E, Alvaro D. Cholangiocytes: cell transplantation. Biochim Biophys Acta - Mol Basis Dis. 2017;1864:1516–23.

    Article  CAS  Google Scholar 

  36. Michalopoulos GK. Hepatostat: liver regeneration and normal liver tissue maintenance. Hepatology. 2017;65(4):1384–92.

    Article  PubMed  Google Scholar 

  37. Michalopoulos GK, DeFrances MC. Liver regeneration. Science. 1997;276(5309):60–6.

    Article  CAS  PubMed  Google Scholar 

  38. Huch M, Dorrell C, Boj SF, van Es JH, Li VSW, van de Wetering M, et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature. 2013;494(7436):247–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Furuyama K, Kawaguchi Y, Akiyama H, Horiguchi M, Kodama S, Kuhara T, et al. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat Genet. 2011;43(1):34–41.

    Article  CAS  PubMed  Google Scholar 

  40. Shin S, Walton G, Aoki R, Brondell K, Schug J, Fox A, et al. Foxl1-Cre-marked adult hepatic progenitors have clonogenic and bilineage differentiation potential. Genes Dev. 2011;25(11):1185–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dorrell C, Erker L, Schug J, Kopp JL, Canaday PS, Fox AJ, et al. Prospective isolation of a bipotential clonogenic liver progenitor cell in adult mice. Genes Dev. 2011;25(11):1193–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yanger K, Knigin D, Zong Y, Maggs L, Gu G, Akiyama H, et al. Adult hepatocytes are generated by self-duplication rather than stem cell differentiation. Cell Stem Cell. 2014;15(3):340–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cao W, Chen K, Bolkestein M, Yin Y, Verstegen MMA, Bijvelds MJC, et al. Dynamics of proliferative and quiescent stem cells in liver homeostasis and injury. Gastroenterology. 2017;153(4):1133–47.

    Article  PubMed  Google Scholar 

  44. Xia T, Liu W, Yang L. A review of gradient stiffness hydrogels used in tissue engineering and regenerative medicine. J Biomed Mater Res Part A. 2017;105(6):1799–812.

    Article  CAS  Google Scholar 

  45. Caliari SR, Burdick JA. A practical guide to hydrogels for cell culture. Nat Methods. 2016;13(5):405–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lauschke VM, Hendriks DFG, Bell CC, Andersson TB, Ingelman-Sundberg M. Novel 3D culture Systems for Studies of human liver function and assessments of the hepatotoxicity of drugs and drug candidates. Chem Res Toxicol. 2016;29(12):1936–55.

    Article  CAS  PubMed  Google Scholar 

  47. Huch M, Gehart H, Van Boxtel R, Hamer K, Blokzijl F, Verstegen MMA, et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell. 2015;160(1–2):299–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459(7244):262–5.

    Article  CAS  PubMed  Google Scholar 

  49. Camp JG, Sekine K, Gerber T, Loeffler-Wirth H, Binder H, Gac M, et al. Multilineage communication regulates human liver bud development from pluripotency. Nature. 2017;546(7659):533–8.

    Article  CAS  PubMed  Google Scholar 

  50. Mills RJ, Titmarsh DM, Koenig X, Parker BL, Ryall JG, Quaife-Ryan GA, et al. Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. Proc Natl Acad Sci. 2017;114(40):E8372–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang S, Gao D, Chen Y. The potential of organoids in urological cancer research. Nat Rev Urol. 2017;14(7):401–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. McCright B, Lozier J, Gridley T. A mouse model of Alagille syndrome: Notch2 as a genetic modifier of Jag1 haploinsufficiency. Development. 2002;129(4):1075–82.

    Article  CAS  PubMed  Google Scholar 

  53. Vrijens K, Thys S, De Jeu MT, Postnov AA, Pfister M, Cox L, et al. Ozzy, a Jag1 vestibular mouse mutant, displays characteristics of Alagille syndrome. Neurobiol Dis. 2006;24(1):28–40.

    Article  CAS  PubMed  Google Scholar 

  54. Underkoffler LA, Carr E, Nelson A, Ryan MJ, Schultz R, Loomes KM. Microarray data reveal relationship between Jag1 and Ddr1 in mouse liver. Kirchmair R, editor. PLoS One. 2013;8(12):e84383.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Lozier J, McCright B, Gridley T. Notch signaling regulates bile duct morphogenesis in mice. PLoS One. 2008;3(3):e1851.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Golson ML, Loomes KM, Oakey R, Kaestner KH. Ductal Malformation and Pancreatitis in Mice Caused by Conditional Jag1 Deletion. Gastroenterology. 2009;136(5):1761–1771.e1.

    Article  CAS  PubMed  Google Scholar 

  57. Loomes KM, Russo P, Ryan M, Nelson A, Underkoffler L, Glover C, et al. Bile duct proliferation in liver-specific Jag1 conditional knockout mice: effects of gene dosage. Hepatology. 2007;45(2):323–30.

    Article  CAS  PubMed  Google Scholar 

  58. Hofmann JJ, Zovein AC, Koh H, Radtke F, Weinmaster G, Iruela-Arispe ML, et al. Jagged1 in the portal vein mesenchyme regulates intrahepatic bile duct development: insights into Alagille syndrome. Development. 2010;137(23):4061–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sparks EE, Huppert KA, Brown MA, Washington MK, Huppert SS. Notch signaling regulates formation of the three-dimensional architecture of intrahepatic bile ducts in mice. Hepatology. 2010;51(4):1391–400.

    Article  CAS  PubMed  Google Scholar 

  60. Youngstrom DW, Dishowitz MI, Bales CB, Carr E, Mutyaba PL, Kozloff KM, et al. Jagged1 expression by osteoblast-lineage cells regulates trabecular bone mass and periosteal expansion in mice. Bone. 2016;91:64–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Andersson ER, Chivukula IV, Hankeova S, Sjöqvist M, Tsoi YL, Ramsköld D, Masek J, Elmansuri A, Hoogendoorn A, Vazquez E, Storvall H, Netušilová J, Huch M, Fischler B, Ellis E, Contreras A, Nemeth A, Chien KC, Clevers H, Sandberg R, Bryja V, Lendahl U. Mouse Model of Alagille Syndrome and Mechanisms of Jagged1 Missense Mutations. Gastroenterology. 2018;154(4):1080–95.

    Article  CAS  PubMed  Google Scholar 

  62. Lorent K, Yeo S-Y, Oda T, Chandrasekharappa S, Chitnis A, Matthews RP, et al. Inhibition of jagged-mediated Notch signaling disrupts zebrafish biliary development and generates multi-organ defects compatible with an Alagille syndrome phenocopy. Development. 2004;131(22):5753–66.

    Article  CAS  PubMed  Google Scholar 

  63. Zhang D, Gates KP, Barske L, Wang G, Lancman JJ, Zeng X-XI, et al. Endoderm Jagged induces liver and pancreas duct lineage in zebrafish. Nat Commun. 2017;8(1):769.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Martignoni M, Groothuis GMM, de Kanter R. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol. 2006;2(6):875–94.

    Article  CAS  PubMed  Google Scholar 

  65. Lee-Rueckert M, Escola-Gil JC, Kovanen PT. HDL functionality in reverse cholesterol transport — challenges in translating data emerging from mouse models to human disease. Biochim Biophys Acta Mol Cell Biol Lipids. 2016;1861(7):566–83.

    Article  CAS  Google Scholar 

  66. Xu D, Peltz G. Can humanized mice predict drug “behavior” in humans? Annu Rev Pharmacol Toxicol. 2016;56(1):323–38.

    Article  CAS  PubMed  Google Scholar 

  67. Ware BR, Khetani SR. Engineered liver platforms for different phases of drug development. Trends Biotechnol. 2017;35(2):172–83.

    Article  CAS  PubMed  Google Scholar 

  68. Sivaraman A, Leach J, Townsend S, Iida T, Hogan B, Stolz D, et al. A microscale in vitro physiological model of the liver: predictive screens for drug metabolism and enzyme induction. Curr Drug Metab. 2005;6(6):569–91.

    Article  CAS  PubMed  Google Scholar 

  69. Kasuya J, Sudo R, Mitaka T, Ikeda M, Tanishita K. Spatio-temporal control of hepatic stellate cell–endothelial cell interactions for reconstruction of liver sinusoids In Vitro. Tissue Eng Part A. 2012;18(9–10):1045–56.

    Article  CAS  PubMed  Google Scholar 

  70. Kang YBA, Sodunke TR, Lamontagne J, Cirillo J, Rajiv C, Bouchard MJ, et al. Liver sinusoid on a chip: long-term layered co-culture of primary rat hepatocytes and endothelial cells in microfluidic platforms. Biotechnol Bioeng. 2015;112(12):2571–82.

    Article  CAS  PubMed  Google Scholar 

  71. Rennert K, Steinborn S, Gröger M, Ungerböck B, Jank A-M, Ehgartner J, et al. A microfluidically perfused three dimensional human liver model. Biomaterials. 2015;71:119–31.

    Article  CAS  PubMed  Google Scholar 

  72. Toh Y-C, Lim TC, Tai D, Xiao G, van Noort D, Yu H. A microfluidic 3D hepatocyte chip for drug toxicity testing. Lab Chip. 2009;9(14):2026–35.

    Article  CAS  PubMed  Google Scholar 

  73. Shih M-C, Tseng S-H, Weng Y-S, Chu I-M, Liu C-H. A microfluidic device mimicking acinar concentration gradients across the liver acinus. Biomed Microdevices. 2013;15(5):767–80.

    Article  CAS  PubMed  Google Scholar 

  74. Burke ZD, Reed KR, Phesse TJ, Sansom OJ, Clarke AR, Tosh D. Liver zonation occurs through a beta-catenin-dependent, c-Myc-independent mechanism. Gastroenterology. 2009;136(7):2316–2324–3.

    Article  CAS  Google Scholar 

  75. Sato A, Kadokura K, Uchida H, Tsukada K. An in vitro hepatic zonation model with a continuous oxygen gradient in a microdevice. Biochem Biophys Res Commun. 2014;453(4):767–71.

    Article  CAS  PubMed  Google Scholar 

  76. Allen JW, Khetani SR, Bhatia SN. In vitro zonation and toxicity in a hepatocyte bioreactor. Toxicol Sci. 2005;84(1):110–9.

    Article  CAS  PubMed  Google Scholar 

  77. Larrosa-Haro A, Sáenz-Rivera C, González-Ortiz M, Coello-Ramírez P, Vázquez-Camacho G. Lack of cholesterol-lowering effect of graded doses of cholestyramine in children with Alagille syndrome: a pilot study. J Pediatr Gastroenterol Nutr. 2003;36(1):50–3.

    Article  CAS  PubMed  Google Scholar 

  78. Najimi M, Defresne F, Sokal EM. Concise review: updated advances and current challenges in cell therapy for inborn liver metabolic defects. Stem Cells Transl Med. 2016;5(8):1117–25.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zhao D, Chen S, Cai J, Guo Y, Song Z, Che J, et al. Derivation and characterization of hepatic progenitor cells from human embryonic stem cells. Verfaillie CM, editor. PLoS One. 2009;4(7):e6468.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Sampaziotis F, Cardoso de Brito M, Madrigal P, Bertero A, Saeb-Parsy K, FAC S, et al. Cholangiocytes derived from human induced pluripotent stem cells for disease modeling and drug validation. Nat Biotechnol. 2015;33(8):845–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dianat N, Dubois-Pot-Schneider H, Steichen C, Desterke C, Leclerc P, Raveux A, et al. Generation of functional cholangiocyte-like cells from human pluripotent stem cells and HepaRG cells. Hepatology. 2014;60(2):700–14.

    Article  CAS  PubMed  Google Scholar 

  82. De Assuncao TM, Sun Y, Jalan-Sakrikar N, Drinane MC, Huang BQ, Li Y, et al. Development and characterization of human-induced pluripotent stem cell-derived cholangiocytes. Lab Investig. 2015;95(6):684–96.

    Article  PubMed  CAS  Google Scholar 

  83. Ogawa M, Ogawa S, Bear CE, Ahmadi S, Chin S, Li B, et al. Directed differentiation of cholangiocytes from human pluripotent stem cells. Nat Biotechnol. 2015;33(8):853–61.

    Article  CAS  PubMed  Google Scholar 

  84. Ghanekar A, Kamath BM. Cholangiocytes derived from induced pluripotent stem cells for disease modeling. Curr Opin Gastroenterol. 2016;32(3):210–5.

    CAS  PubMed  Google Scholar 

  85. Fujino H, Hiramatsu H, Tsuchiya A, Niwa A, Noma H, Shiota M, et al. Human cord blood CD34+ cells develop into hepatocytes in the livers of NOD/SCID/ cnull mice through cell fusion. FASEB J. 2007;21(13):3499–510.

    Article  CAS  PubMed  Google Scholar 

  86. Skvorak KJ, Dorko K, Marongiu F, Tahan V, Hansel MC, Gramignoli R, et al. Placental stem cell correction of murine intermediate maple syrup urine disease. Hepatology. 2013;57(3):1017–23.

    Article  CAS  PubMed  Google Scholar 

  87. Skvorak KJ, Dorko K, Marongiu F, Tahan V, Hansel MC, Gramignoli R, et al. Improved amino acid, bioenergetic metabolite and neurotransmitter profiles following human amnion epithelial cell transplant in intermediate maple syrup urine disease mice. Mol Genet Metab. 2013;109(2):132–8.

    Article  CAS  PubMed  Google Scholar 

  88. Manuelpillai U, Tchongue J, Lourensz D, Vaghjiani V, Samuel CS, Liu A, et al. Transplantation of human amnion epithelial cells reduces hepatic fibrosis in immunocompetent CCl 4 -treated mice. Cell Transplant. 2010;19(9):1157–68.

    Article  PubMed  Google Scholar 

  89. Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M, Gepstein A, et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest. 2001;108(3):407–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, Kennedy M, et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature. 2008;453(7194):524–8.

    Article  CAS  PubMed  Google Scholar 

  91. Burridge PW, Matsa E, Shukla P, Lin ZC, Churko JM, Ebert AD, et al. Chemically defined generation of human cardiomyocytes. Nat Methods. 2014;11(8):855–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bellamy V, Vanneaux V, Bel A, Nemetalla H, Emmanuelle Boitard S, Farouz Y, et al. Long-term functional benefits of human embryonic stem cell-derived cardiac progenitors embedded into a fibrin scaffold. J Heart Lung Transplant. 2015;34(9):1198–207.

    Article  PubMed  Google Scholar 

  93. Blin G, Nury D, Stefanovic S, Neri T, Guillevic O, Brinon B, et al. A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmyocardial infarcted nonhuman primates. J Clin Invest. 2010;120(4):1125–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol. 2007;25(9):1015–24.

    Article  CAS  PubMed  Google Scholar 

  95. Tajiri N, Acosta S, Portillo-Gonzales GS, Aguirre D, Reyes S, Lozano D, et al. Therapeutic outcomes of transplantation of amniotic fluid-derived stem cells in experimental ischemic stroke. Front Cell Neurosci. 2014;8:227.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Bartolucci JG, Verdugo FJ, González PL, Larrea RE, Abarzua E, Goset C, et al. Safety and Efficacy of the Intravenous Infusion of Umbilical Cord Mesenchymal Stem Cells in Patients With Heart Failure: A Phase 1/2 Randomized Controlled Trial (RIMECARD Trial). Circ Res. 2017;121(10):1192–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Spinner NB, Leonard LD, Krantz ID. Alagille syndrome. GeneReviews(®). Seattle: University of Washington; 2013.

    Google Scholar 

  98. Ziesenitz V, Köhler D, Gläser C, Loukanov T, Gorenflo M. PO-0050 absent pulmonary valve in a patient with Alagille syndrome. Arch Dis Child. 2014;99(Suppl 2):A266.2–A266.

    Article  Google Scholar 

  99. Funk M, Cohen M, Santana O. Alagille syndrome: an unusual presentation of an uncommon disease. South Med J. 2010;103(10):1049–51.

    Article  PubMed  Google Scholar 

  100. Della Rocca F, Sartore S, Guidolin D, Bertiplaglia B, Gerosa G, Casarotto D, et al. Cell composition of the human pulmonary valve: a comparative study with the aortic valve--the VESALIO Project. Vitalitate Exornatum succedaneum Aorticum labore Ingegnoso Obtinebitur. Ann Thorac Surg. 2000;70(5):1594–600.

    Article  CAS  PubMed  Google Scholar 

  101. VeDepo MC, Detamore MS, Hopkins RA, Converse GL. Recellularization of decellularized heart valves: progress toward the tissue-engineered heart valve. J Tissue Eng. 2017;8:2041731417726327.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Ott HC, Matthiesen TS, Goh S-K, Black LD, Kren SM, Netoff TI, et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med. 2008;14(2):213–21.

    Article  CAS  PubMed  Google Scholar 

  103. Uygun BE, Soto-Gutierrez A, Yagi H, Izamis M-L, Guzzardi MA, Shulman C, et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med. 2010;16(7):814–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ko IK, Peng L, Peloso A, Smith CJ, Dhal A, Deegan DB, et al. Bioengineered transplantable porcine livers with re-endothelialized vasculature. Biomaterials. 2015;40:72–9.

    Article  CAS  PubMed  Google Scholar 

  105. Uygun BE, Izamis M-L, Jaramillo M, Chen Y, Price G, Ozer S, et al. Discarded livers find a new life: engineered liver grafts using hepatocytes recovered from marginal livers. Artif Organs. 2017;41(6):579–85.

    Article  CAS  PubMed  Google Scholar 

  106. Bryan W. Vascular tissue challenge. 2016. https://www.nasa.gov/directorates/spacetech/centennial_challenges/vascular_tissue.html.

  107. Andersson ER, Lendahl U. Therapeutic modulation of Notch signalling--are we there yet? Nat Rev Drug Discov. 2014;13(5):357–78.

    Article  CAS  PubMed  Google Scholar 

  108. Keeling KM, Xue X, Gunn G, Bedwell DM. Therapeutics based on stop codon readthrough. Annu Rev Genomics Hum Genet. 2014;15(1):371–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zucchelli S, Patrucco L, Persichetti F, Gustincich S, Cotella D. Engineering translation in mammalian cell factories to increase protein yield: the unexpected use of long non-coding SINEUP RNAs. Comput Struct Biotechnol J. 2016;14:404–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Jiang F, Doudna JA. CRISPR–Cas9 structures and mechanisms. Annu Rev Biophys. 2017;46(1):505–29.

    Article  CAS  PubMed  Google Scholar 

  111. Riely CA, Cotlier E, Jensen PS, Klatskin G. Arteriohepatic dysplasia: a benign syndrome of intrahepatic cholestasis with multiple organ involvement. Ann Intern Med. 1979;91(4):520–7.

    Article  CAS  PubMed  Google Scholar 

  112. Roskams T, Desmet V. Embryology of extra- and intrahepatic bile ducts, the ductal plate. Anat Rec Adv Integr Anat Evol Biol. 2008;291(6):628–35.

    Article  CAS  Google Scholar 

  113. Andersson ER, Lendahl U. Therapeutic modulation of Notch signalling — are we there yet? Nat Rev Drug Discov. 2014;13(5):357–78.

    Article  CAS  PubMed  Google Scholar 

  114. Ye Q, Jiang J, Zhan G, Yan W, Huang L, Hu Y, et al. Small molecule activation of NOTCH signaling inhibits acute myeloid leukemia. Sci Rep. 2016;6(1):26510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Weijzen S, Velders MP, Elmishad AG, Bacon PE, Panella JR, Nickoloff BJ, et al. The Notch ligand Jagged-1 is able to induce maturation of monocyte-derived human dendritic cells. J Immunol. 2002;169(8):4273–8.

    Article  CAS  PubMed  Google Scholar 

  116. Nickoloff B, Qin J, Chaturvedi V, Denning M, Bonish B, Miele L. Jagged-1 mediated activation of Notch signaling induces complete maturation of human keratinocytes through NF-kB and PPARg. Cell Death Differ. 2002;9:842–55.

    Article  CAS  PubMed  Google Scholar 

  117. Zhao X-C, Dou G-R, Wang L, Liang L, Tian D-M, Cao X-L, et al. Inhibition of tumor angiogenesis and tumor growth by the DSL domain of Human Delta-like 1 targeted to vascular endothelial cells. Neoplasia. 2013;15(7):815–IN32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Nichols JT, Miyamoto A, Olsen SL, D’Souza B, Yao C, Weinmaster G. DSL ligand endocytosis physically dissociates Notch1 heterodimers before activating proteolysis can occur. J Cell Biol. 2007;176(4):445–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Youngstrom DW, Senos R, Zondervan RL, Brodeur JD, Lints AR, Young DR, et al. Intraoperative delivery of the Notch ligand Jagged-1 regenerates appendicular and craniofacial bone defects. NPJ Regen Med. 2017;2:32.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Olsen IE, Ittenbach RF, Rovner AJ, Leonard MB, Mulberg AE, Stallings VA, et al. Deficits in size-adjusted bone mass in children with Alagille syndrome. J Pediatr Gastroenterol Nutr. 2005;40(1):76–82.

    Article  PubMed  Google Scholar 

  121. Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics--developing a new class of drugs. Nat Rev Drug Discov. 2014;13(10):759–80.

    Article  CAS  PubMed  Google Scholar 

  122. Grochowski CM, Loomes KM, Spinner NB. Jagged1 (JAG1): structure, expression, and disease associations. Gene. 2016;576(1 Pt 3):381–4.

    Article  CAS  PubMed  Google Scholar 

  123. Mašek J, Andersson ERER. The developmental biology of genetic Notch disorders. Development. 2017;144(10):1743–63.

    Article  PubMed  CAS  Google Scholar 

  124. McDaniell R, Warthen DM, Sanchez-Lara PA, Pai A, Krantz ID, Piccoli DA, et al. NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the NOTCH signaling pathway. Am J Hum Genet. 2006;79(1):169–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kamath BM, Bauer RC, Loomes KM, Chao G, Gerfen J, Hutchinson A, et al. NOTCH2 mutations in Alagille syndrome. J Med Genet. 2012;49(2):138–44.

    Article  CAS  PubMed  Google Scholar 

  126. Stenson PD, Mort M, Ball EV, Shaw K, Phillips AD, Cooper DN. The human gene mutation database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum Genet. 2014;133(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  127. McCaughan KK, Brown CM, Dalphin ME, Berry MJ, Tate WP. Translational termination efficiency in mammals is influenced by the base following the stop codon. Proc Natl Acad Sci. 1995;92(12):5431–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Tate WP, Poole ES, Horsfield JA, Mannering SA, Brown CM, Moffat JG, et al. Translational termination efficiency in both bacteria and mammals is regulated by the base following the stop codon. Biochem Cell Biol. 1995;73(11–12):1095–103.

    Article  CAS  PubMed  Google Scholar 

  129. Manuvakhova M, Keeling K, Bedwell DM. Aminoglycoside antibiotics mediate context-dependent suppression of termination codons in a mammalian translation system. RNA. 2000;6(7):1044–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Cassan M, Rousset JP. UAG readthrough in mammalian cells: effect of upstream and downstream stop codon contexts reveal different signals. BMC Mol Biol. 2001;2:3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Howard M, Frizzell RA, Bedwell DM. Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations. Nat Med. 1996;2(4):467–9.

    Article  CAS  PubMed  Google Scholar 

  132. Recht MI, Douthwaite S, Puglisi JD, Davies J, Noller HF. Basis for prokaryotic specificity of action of aminoglycoside antibiotics. EMBO J. 1999;18(11):3133–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Du M, Jones JR, Lanier J, Keeling KM, Lindsey JR, Tousson A, et al. Aminoglycoside suppression of a premature stop mutation in a Cftr-/- mouse carrying a human CFTR-G542X transgene. J Mol Med. 2002;80(9):595–604.

    Article  CAS  PubMed  Google Scholar 

  134. Sangkuhl K, Schulz A, Römpler H, Yun J, Wess J, Schöneberg T. Aminoglycoside-mediated rescue of a disease-causing nonsense mutation in the V2 vasopressin receptor gene in vitro and in vivo. Hum Mol Genet. 2004;13(9):893–903.

    Article  CAS  PubMed  Google Scholar 

  135. Clancy JP, Bebök Z, Ruiz F, King C, Jones J, Walker L, et al. Evidence that systemic gentamicin suppresses premature stop mutations in patients with cystic fibrosis. Am J Respir Crit Care Med. 2001;163(7):1683–92.

    Article  CAS  PubMed  Google Scholar 

  136. Wilschanski M, Yahav Y, Yaacov Y, Blau H, Bentur L, Rivlin J, et al. Gentamicin-induced correction of CFTR function in patients with cystic fibrosis and CFTR stop mutations. N Engl J Med. 2003;349(15):1433–41.

    Article  CAS  PubMed  Google Scholar 

  137. Malik V, Rodino-Klapac LR, Viollet L, Wall C, King W, Al-Dahhak R, et al. Gentamicin-induced readthrough of stop codons in Duchenne muscular dystrophy. Ann Neurol. 2010;67(6):771–80.

    CAS  PubMed  Google Scholar 

  138. Politano L, Nigro G, Nigro V, Piluso G, Papparella S, Paciello O, et al. Gentamicin administration in Duchenne patients with premature stop codon. Preliminary results. Acta Myol. 2003;22(1):15–21.

    CAS  PubMed  Google Scholar 

  139. Baradaran-Heravi A, Niesser J, Balgi AD, Choi K, Zimmerman C, South AP, et al. Gentamicin B1 is a minor gentamicin component with major nonsense mutation suppression activity. Proc Natl Acad Sci U S A. 2017;114(13):3479–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Aburano T, Yokoyama K, Takayama T, Tonami N, Hisada K. Distinct hepatic retention of Tc-99m IDA in arteriohepatic dysplasia (Alagille syndrome). Clin Nucl Med. 1989;14(12):874–6.

    Article  CAS  PubMed  Google Scholar 

  141. Libbrecht L, Spinner NB, Moore EC, Cassiman D, Van Damme-Lombaerts R, Roskams T. Peripheral bile duct paucity and cholestasis in the liver of a patient with Alagille syndrome: further evidence supporting a lack of postnatal bile duct branching and elongation. Am J Surg Pathol. 2005;29(6):820–6.

    Article  PubMed  Google Scholar 

  142. Carrieri C, Cimatti L, Biagioli M, Beugnet A, Zucchelli S, Fedele S, et al. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature. 2012;491(7424):454–7.

    Article  CAS  PubMed  Google Scholar 

  143. Zucchelli S, Fasolo F, Russo R, Cimatti L, Patrucco L, Takahashi H, et al. SINEUPs are modular antisense long non-coding RNAs that increase synthesis of target proteins in cells. Front Cell Neurosci. 2015;9:174.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Zucchelli S, Cotella D, Takahashi H, Carrieri C, Cimatti L, Fasolo F, et al. SINEUPs: a new class of natural and synthetic antisense long non-coding RNAs that activate translation. RNA Biol. 2015;12(8):771–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Thakurdas SM, Lopez MF, Kakuda S, Fernandez-Valdivia R, Zarrin-Khameh N, Haltiwanger RS, et al. Jagged1 heterozygosity in mice results in a congenital cholangiopathy which is reversed by concomitant deletion of one copy of Poglut1 (Rumi). Hepatology. 2016;63(2):550–65.

    Article  CAS  PubMed  Google Scholar 

  146. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Cong L, Ann Ran F, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex Genome Engineering Using CRIPSR/Cas Systems. Science. 2013;339:819–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Long C, McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R, Olson EN. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science. 2014;345(6201):1184–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem. 2010;79:181–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. San Filippo J, Sung P, Klein H. Mechanism of eukaryotic homologous recombination. Annu Rev Biochem. 2008;77(1):229–57.

    Article  CAS  PubMed  Google Scholar 

  151. Long C, Amoasii L, Mireault AA, McAnally JR, Li H, Sanchez-Ortiz E, et al. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science. 2016;351(6271):400–3.

    Article  CAS  PubMed  Google Scholar 

  152. Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA, Castellanos Rivera RM, et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science. 2016;351(6271):403–7.

    Article  CAS  PubMed  Google Scholar 

  153. Tabebordbar M, Zhu K, Cheng JKW, Chew WL, Widrick JJ, Yan WX, et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science. 2016;351(6271):407–11.

    Article  CAS  PubMed  Google Scholar 

  154. Yang Y, Wang L, Bell P, McMenamin D, He Z, White J, et al. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol. 2016;34(3):334–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Walter TJ, Vanderpool C, Cast AE, Huppert SS. Intrahepatic bile duct regeneration in mice does not require Hnf6 or Notch signaling through Rbpj. Am J Pathol. 2014;184(5):1479–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Yanger K, Zong Y, Maggs LR, Shapira SN, Maddipati R, Aiello NM, et al. Robust cellular reprogramming occurs spontaneously during liver regeneration. Genes Dev. 2013;27(7):719–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Yu B, He Z-Y, You P, Han Q-W, Xiang D, Chen F, et al. Reprogramming fibroblasts into bipotential hepatic stem cells by defined factors. Cell Stem Cell. 2013;13(3):328–40.

    Article  CAS  PubMed  Google Scholar 

  158. Chen R, Desai NR, Ross JS, Zhang W, Chau KH, Wayda B, et al. Publication and reporting of clinical trial results: cross sectional analysis across academic medical centers. BMJ. 2016;352:i637.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Kicinski M. How does under-reporting of negative and inconclusive results affect the false-positive rate in meta-analysis? A simulation study. BMJ Open. 2014;4(8):e004831.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Conflict of Interest

ER Andersson has a project funded by Moderna Therapeutics. The funder had no role or influence in the writing of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma R. Andersson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Andersson, E.R. (2018). Future Therapeutic Approaches for Alagille Syndrome. In: Kamath, B., Loomes, K. (eds) Alagille Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-319-94571-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94571-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94570-5

  • Online ISBN: 978-3-319-94571-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics