Skip to main content

Advanced Grasping with the Pisa/IIT SoftHand

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 816))

Abstract

This chapter presents the hardware, software and overall strategy used by the team UNIPI-IIT-QB to participate to the Robotic Grasping and Manipulation Competition. It relies on the PISA/IIT SoftHand, which is underactuated soft robotic hand that can adapt to the grasped object shape and is compliant with the environment. It was used for the hand-in-hand and for the simulation tracks, where the team reached first and third places respectively.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Videos available at https://goo.gl/8zYDWs.

References

  1. Ajoudani, A., et al.: A manipulation framework for compliant humanoid COMAN: application to a valve turning task. In: IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 664–670. IEEE (2014)

    Google Scholar 

  2. Bernstein, N.A.: The Co-ordination and Regulation of Movements, 1st edn. Pergamon Press Ltd., New York (1967)

    Google Scholar 

  3. Bicchi, A., Gabiccini, M., Santello, M.: Modelling natural and artificial hands with synergies. Philos. Trans. R. Soc. B: Biol. Sci. 366(1581), 3153–3161 (2011)

    Article  Google Scholar 

  4. Birglen, L., Gosselin, C.M., Laliberté, T.: Underactuated Robotic Hands, vol. 40. Springer, Heidelberg (2008)

    Google Scholar 

  5. Bonilla, M., et al.: Grasping with soft hands. In: IEEE-RAS International Conference on Humanoid Robots (Humanoids), Madrid, Spain, 18–20 November 2014

    Google Scholar 

  6. Brown, C.Y., Asada, H.H.: Inter-finger coordination and postural synergies in robot hands via mechanical implementation of principal components analysis. In: IEEE International Conference on Intelligent Robots and Systems (IROS), pp. 2877–2882. IEEE (2007)

    Google Scholar 

  7. Brygo, A., et al.: Synergy-based interface for bilateral tele-manipulations of a master-slave system with large asymmetries. In: International Conference on Robotics and Automation (2016)

    Google Scholar 

  8. Cannon, J.R., Howell, L.L.: A compliant contact-aided revolute joint. Mech. Mach. Theory 40(11), 1273–1293 (2005)

    Article  Google Scholar 

  9. Catalano, M.G., et al.: Adaptive synergies for the design and control of the Pisa/IIT SoftHand. Int. J. Robot. Res. (IJRR) 33, 768–782 (2014). https://doi.org/10.1177/0278364913518998

    Article  Google Scholar 

  10. Ciocarlie, M., Goldfeder, C., Allen, P.: Dexterous grasping via eigengrasps: a low-dimensional approach to a high-complexity problem. In: Robotics: Science and Systems Manipulation Workshop-Sensing and Adapting to the Real World. Citeseer (2007)

    Google Scholar 

  11. MSC Software Corp. Adams. http://www.mscsoftware.com/product/adams. Accessed 26 Aug 2015

  12. Deimel, R., Brock, O.: A compliant hand based on a novel pneumatic actuator. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2047–2053 (2013). https://doi.org/10.1109/ICRA.2013.6630851

  13. Deimel, R., Brock, O.: A novel type of compliant, underactuated robotic hand for dexterous grasping. In: Robotics: Science and Systems, Berkeley, CA, pp. 1687–1692 (2014)

    Google Scholar 

  14. Santina, C.D., et al.: Dexterity augmentation on a synergistic hand: the Pisa/IIT SoftHand+. In: IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 497–503. IEEE (2015)

    Google Scholar 

  15. Eppner, C., Brock, O.: Planning grasp strategies that exploit environmental constraints. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 4947–4952 (2015). https://doi.org/10.1109/ICRA.2015.7139886

  16. Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1997, pp. 209–216. ACM Press/Addison-Wesley Publishing Co., New York (1997)

    Google Scholar 

  17. Geidenstam, S., et al.: Learning of 2D grasping strategies from box-based 3D object approximations. In: Robotics: Science and Systems (RSS), Seattle, USA (2009)

    Google Scholar 

  18. Godfrey, S.B., et al.: A synergy-driven approach to a myoelectric hand. In: 2013 IEEE International Conference on Rehabilitation Robotics (ICORR), pp. 1–6. IEEE (2013)

    Google Scholar 

  19. Grebenstein, M., et al.: The DLR hand arm system. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3175–3182. IEEE (2011)

    Google Scholar 

  20. Grioli, G., et al.: Adaptive synergies: an approach to the design of under-actuated robotic hands. In: IEEE International Conference on Intelligent Robots and Systems (IROS), pp. 1251–1256. IEEE (2012)

    Google Scholar 

  21. Hauser, K.: Robust contact generation for robot simulation with unstructured meshes. In: International Symposium on Robotics Research, Singapore (2013)

    Google Scholar 

  22. Hillberry, B.M., Hall Jr., A.S.: Rolling contact joint. US Patent 3,932,045 (1976)

    Google Scholar 

  23. Hirose, S.: Connected differential mechanism and its applications. In: Proceedings of 2nd ICAR, pp. 319–326 (1985)

    Google Scholar 

  24. Kappler, D., Bohg, J., Schaal, S.: Leveraging big data for grasp planning. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 4304–4311. IEEE (2015)

    Google Scholar 

  25. Kim, J., et al.: Physically based grasp quality evaluation under pose uncertainty. IEEE Trans. Robot. 29(6), 1424–1439 (2013). ISSN: 1552–3098, https://doi.org/10.1109/TRO.2013.2273846

    Article  Google Scholar 

  26. Laliberté, T., Birglen, L., Gosselin, C.: Underactuation in robotic grasping hands. Mach. Intell. Robot. Control 4(3), 1–11 (2002)

    Google Scholar 

  27. Latash, M.L.: Fundamentals of Motor Control. Academic Press, New York (2012)

    Google Scholar 

  28. Ma, R.R., Odhner, L.U., Dollar, A.M.: A modular, open-source 3D printed underactuated hand. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2737–2743 (2013). https://doi.org/10.1109/ICRA.2013.6630954

  29. Miller, A.T., Allen, P.K.: Examples of 3D grasp quality computations. In: IEEE International Conference on Robotics and Automation, pp. 1240–1246. IEEE (1999)

    Google Scholar 

  30. Odhner, L.U., et al.: A compliant, underactuated hand for robust manipulation. Int. J. Robot. Res. (IJRR) 33(5), 736–752 (2014). https://doi.org/10.1177/0278364913514466

    Article  Google Scholar 

  31. RightHand Robotics. Reflex SF Spec Sheet. http://www.righthandrobotics.com/main:reflex. Accessed 26 Aug 2015

  32. Robotiq. 3-finger adaptive robot gripper spec sheet. http://robotiq.com/products/industrial-robot-hand/. Accessed 26 Aug 2015

  33. Rocchi, A., Hauser, K.: A generic simulator for underactuated compliant hands. In: 2016 IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR) (2016)

    Google Scholar 

  34. Rocchi, A., et al.: Stable simulation of underactuated compliant hands. In: IEEE International Conference on Robotics and Automation (ICRA) (2016)

    Google Scholar 

  35. Rosales, C.J.: Pisa/IIT Soft Hand. https://github.com/CentroEPiaggio/pisa-iit-soft-hand. Accessed 26 Aug 2015

  36. Santello, M., Flanders, M., Soechting, J.F.: Postural hand synergies for tool use. J. Neurosci. 18(23), 10105–10115 (1998)

    Article  Google Scholar 

  37. Wimboeck, T., Ott, C., Hirzinger, G.: Passivity-based object-level impedance control for a multifingered hand. In: IEEE International Conference on Intelligent Robots and Systems (IROS), pp. 4621–4627. IEEE (2006)

    Google Scholar 

  38. Kai, X., et al.: Design of an underactuated anthropomorphic hand with mechanically implemented postural synergies. Adv. Robot. 28(21), 1459–1474 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This research has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 645599 (SOMA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Bianchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bonilla, M. et al. (2018). Advanced Grasping with the Pisa/IIT SoftHand. In: Sun, Y., Falco, J. (eds) Robotic Grasping and Manipulation. RGMC 2016. Communications in Computer and Information Science, vol 816. Springer, Cham. https://doi.org/10.1007/978-3-319-94568-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94568-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94567-5

  • Online ISBN: 978-3-319-94568-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics