Skip to main content

Complete Robotic Systems for the IROS Grasping and Manipulation Challenge

  • Conference paper
  • First Online:
  • 656 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 816))

Abstract

Advances in perception, motion planning and grasping algorithms have enabled the movement from pick-and-place robots incapable of handling disturbances in the environment to intelligent robots with manipulation algorithms capable of dealing with novel surroundings. While the tasks outlined by the IROS Grasping and Manipulation Challenge included many challenging tasks (some of which surpassed current progress in robotic manipulation), assumptions about the competition environment were allowed. With these assumptions, we present our vision on two full robotic system pipelines behind the autonomous basket picking and task completion components of the IROS Grasping and Manipulation Competition.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jain, S., Farshchiansadegh, A., Broad, A., Abdollahi, F., Mussa-Ivaldi, F., Argall, B.: Assistive robotic manipulation through shared autonomy and a body-machine interface. In: 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), pp. 526–531. IEEE (2015)

    Google Scholar 

  2. Kappler, D., Bohg, J., Schaal, S.:. Leveraging big data for grasp planning. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 4304–4311. IEEE (2015)

    Google Scholar 

  3. Redmon, J., Angelova, A.: Real-time grasp detection using convolutional neural networks. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 1316–1322. IEEE (2015)

    Google Scholar 

  4. Eppner, C., Deimel, R., Álvarez-Ruiz, J., Maertens, M., Brock, O.: Exploitation of environmental constraints in human and robotic grasping. Int. J. Robot. Res. (2015). https://doi.org/10.1177/0278364914559753

  5. Dang, H., Allen, P.K.: Semantic grasping: planning robotic grasps functionally suitable for an object manipulation task. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1311–1317. IEEE (2012)

    Google Scholar 

  6. Kavraki, L.E., Svestka, P., Latombe, J.-C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996)

    Article  Google Scholar 

  7. LaValle, S.M.: Rapidly-exploring random trees: a new tool for path planning (1998)

    Google Scholar 

  8. Billard, A., Grollman, D.: Robot learning by demonstration. Scholarpedia 8(12), 3824 (2013)

    Article  Google Scholar 

  9. Fiala, M.: ARTag, a fiducial marker system using digital techniques. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 2, pp. 590–596. IEEE (2005)

    Google Scholar 

  10. Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning from demonstration. Robot. Auton. Syst. 57(5), 469–483 (2009)

    Article  Google Scholar 

  11. Ijspeert, A.J., Nakanishi, J., Hoffmann, H., Pastor, P., Schaal, S.: Dynamical movement primitives: learning attractor models for motor behaviors. Neural Comput. 25(2), 328–373 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Lofaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dessalene, E., Lofaro, D. (2018). Complete Robotic Systems for the IROS Grasping and Manipulation Challenge. In: Sun, Y., Falco, J. (eds) Robotic Grasping and Manipulation. RGMC 2016. Communications in Computer and Information Science, vol 816. Springer, Cham. https://doi.org/10.1007/978-3-319-94568-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94568-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94567-5

  • Online ISBN: 978-3-319-94568-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics