Skip to main content

The Use of MCA in Decision-Making Processes on an Example of Terrain Passability Model

  • Chapter
  • First Online:
Quality of Spatial Data in Command and Control System

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 168))

  • 260 Accesses

Abstract

General approaches of MCA may be used in many areas of decision-making processes. Chapter 4 showed its applications for data models of digital geoinformation and the evaluation of their functionality. The following text is dedicated to the use of MCA for solutions of geo-process models. To illustrate the complexity of the method of solution, an example of modelling of passing through terrain with off-road vehicles was chosen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvin, R. B., & Haley, P. W. (1992). NATO reference mobility model, Edition II, NRMM II users guide (Technical Report GL-92-19 ed.). Vickburg, USA: Department of the Army-Waterways Experimental Station, Corps of Engineers.

    Google Scholar 

  • ArcGIS. (2015). ArcGISHelp. Retrieved from www.esri.com.

  • CMeS. (2017). Meteorological dictionary (Meteorologický slovník—In Czech). Retrieved 03 2018, from Meteorologický slovník výkladový a terminologický: http://slovnik.cmes.cz/.

  • CUZK. (2017). Geoportal CUZK. Retrieved from WMService—WMS—Ortofoto: http://geoportal.cuzk.cz/WMS_ORTOFOTO_PUB/WMService.aspx?.

  • CUZK. (2018). (State Administration of Land Surveying and Cadastre, Land Survey Office) Retrieved 10 2017, from Geoportal CUZK—Access to map products and services: http://geoportal.cuzk.cz/.

  • D’Amico, P., Di Martino, F., & Sessa, S. (2013). A GIS as a decision support system for planning sustainable mobility in a case-study. In A. Ventre, A. Maturo, S. Hoskova-Mayerova, & J. Kacprzyk (Eds.), Multicriteria and multiagend decision making with applications to economics and social sciences (Studies in Fuzziness and Soft Computing ed., pp. 115–128). Berlin Heidelberg, Germany: Springer.

    Google Scholar 

  • De Felice, F., & Petrillo, A. (2013). Decision making analysis to improve public participation in stategic energy production management. In A. Ventre, A. Maturo, S. Hoskova-Mayerova, & J. Kacprzyk (Eds.), Multicriteria and multiagend decision making with applications to economics and social sciences (Studies in Fuzziness and Soft Computing ed., pp. 129–142). Berlin Heidelberg, Germany: Springer Verlag.

    Google Scholar 

  • Di Martino, F., & Sessa, S. (2011). Spatial analysis and fuzzy relation equations. Advances in Fuzzy Systems, 2011, p. 14, Article ID 429498.

    Google Scholar 

  • Esri. (2013). ArcGIS User documentation. Copyright © 1995–2013 Esri.

    Google Scholar 

  • Hofmann, A., Hoskova-Mayerova, S., & Talhofer, V. (2013). Usage of fuzzy spatial theory for modelling of terrain passability. Advances in Fuzzy Systems, 2013, p. 13, Article ID 506406.

    Google Scholar 

  • Hoskova-Mayerova, S., Hubacek, M., Bekesiene, S., & Bures, M. (2017). Vehicle movement modelling possibilities for defense and crisis management. In M. Čepin &. R. Briš (Eds.), Safety and reliability—Theory and applications (pp. 3035–3039). London: Taylor & Francis Group.

    Google Scholar 

  • Hošková-Mayerová, Š., Talhofer, V., & Hofmann, A. (2013). Decision-making process with respect to the reliability of geo-database. In A. G. Ventre, A. Maturo, Š. Hošková-Mayerová, & J. Kacprzyk (Eds.), Multicriteria and multiagent decision making with applications to economics and social sciences (Studies in Fuzziness and Soft Computing ed., pp. 179–195). Berlin Heidelberg, Germany: Springer.

    Google Scholar 

  • Hubacek, M. (2011). Geoinformatics in support of simulators training. In Proceedings of 19th International Conference Geography and Geoinformatics: Challenge for Practise and Education (pp. 419–426). Brno: Masaryk University, Faculty of Education.

    Google Scholar 

  • Hubacek, M., Almasiova, L., Brenova, M., Bures, M., & Mertova, E. (2016). Assessing quality of soil maps and possibilities of their use for computing vehicle mobility. In Central Europe area in view of current geography (pp. 99–110). Brno: Masarykova univerzita.

    Google Scholar 

  • Jayakumar, P., & Dasch, J. (2016). The Next Generation NATO Reference mobility model development. NATO Public Release documents, 22. Retrieved from https://www.sto.nato.int/publications/pages/results.aspx?k=NG%20NRMM&s=Search%20All%20STO%20Reports.

  • JPL, N. (2015). Shuttle radar topography mission. Retrieved from NASA—Jet Propulsion Laboratory: http://www2.jpl.nasa.gov/srtm/.

  • Kainz, W. (2007). Fuzzy logic and GIS. Vienna, Austria: University of Vienna.

    Google Scholar 

  • Mitchell, A. (1999). The ESRI guide to GIS analysis. Redlands: ESRI Press.

    Google Scholar 

  • MoD-GeoS. (2010). Catalogue of the topographic objects DMU25 (7.3 ed.). Dobruska: Ministry of Defence of the Czech Republic, Geographic Service.

    Google Scholar 

  • NDMC. (2017). National Drought Mitigation Center. Retrieved 03 2018, from National Drought Mitigation Center Website: http://drought.unl.edu/DroughtBasics/TypesofDrought.aspx.

  • Novák, P. (2000). Soil database (Účelová databáze PŮDY, Příručka uživatele—In Czech). Praha: Vojenský zeměpisný ústav.

    Google Scholar 

  • Pokonieczny, K., & Mościcka, A. (2018). The influence of the shape and size of the cell on developing military passability maps. Cartography and Geographic Information Science.

    Google Scholar 

  • Rybansky, M. (2009). Cross-country movement, the impact and evaluation of geographic factors (1st ed.). Brno, Czech Republic: Akademické nakladatelství CERM, s.r.o. Brno.

    Google Scholar 

  • Rybansky, M., Hofmann, A., Hubacek, M., Kovarik, V., & Talhofer, V. (2015, November). Modelling of cross-country transport in raster format. Environmental Earth Sciences, 74(10), 7049–7058. https://doi.org/10.1007/s12665-015-4759-y.

  • Rybansky, M., & Vala, M. (2009). Analysis of relief impact on transport during crisis situations. Moravian Geographical Reports, 17(3), 19–26.

    Google Scholar 

  • Rybansky, M., & Vala, M. (2010). Relief impact on transport. In: ICMT’09: International Conference on Military Technologies (pp. 551–559). Brno: University of Defence.

    Google Scholar 

  • Schmid, S., Galicz, E., & Reinhardt, W. (2015). WMS performance of selected SQL and NoSQL databases. In International Conference on Military Technologies (ICMT 2015) (pp. 311–316). Brno: University of Defence.

    Google Scholar 

  • STANAG 2999. (2012). Use of helicopters in land operations doctrine (9th ed.). Brussels: NATO Standardization Agency (MAS).

    Google Scholar 

  • Svatonova, H., & Rybansky, M. (2014). Visualization of landscape changes and threatening environmental processes using a digital landscape model. IOP Conference Series: Earth Environment Science, 18, 12–18. IOP science.

    Google Scholar 

  • Talhofer, V. (2004). Digital geographic data: Potential evaluation. In AGILE 2004, 7th Conference on Geographic Information Science, Conference Proceedings (pp. 675 – 686). Heraclion, Crete, Greece: AGILE.

    Google Scholar 

  • Talhofer, V., Hoskova, S., Hofmann, A., & Kratochvil, V. (2009). The system of the evaluation of integrated digital spatial data realibility. In 6th Conference on Mathematics and Physics at Technical Universities (pp. 281–288). Brno: University of Defence.

    Google Scholar 

  • TIFP. (2015). Technical Institute of Fire Protection (in Czech). (Ministry of the Interior of the Czech Republic) Retrieved 02 2018, from Fire Rescue Service of the Czech Republic: http://www.hzscr.cz/hasicien/default.aspx.

  • Veregin, H. (1999). Data quality parameter. In P. A. Longley (Ed.), Geographic information system (2nd ed., pp. 179–189). New York: Wiley.

    Google Scholar 

  • VGHMÚř. (2015). Katalog topografických objektů DMÚ25. Vydání 04 2015. Dobruška: Vojenský geografický a hydrometeorologický úřad (in Czech).

    Google Scholar 

  • VTUPV. (2010). The Military Technical Institute of Ground Forces. (The Military Technical Institute) Retrieved 01 2018, from The Military Technical Institute: http://www.vtusp.cz/en/.

  • Zadeh, I. (1965). Fuzy sets. Information and Control, 8, 338–353.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Václav Talhofer .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Talhofer, V., Hošková-Mayerová, Š., Hofmann, A. (2019). The Use of MCA in Decision-Making Processes on an Example of Terrain Passability Model. In: Quality of Spatial Data in Command and Control System. Studies in Systems, Decision and Control, vol 168. Springer, Cham. https://doi.org/10.1007/978-3-319-94562-0_7

Download citation

Publish with us

Policies and ethics