Skip to main content

Quality of Digital Geographic Data and Information

  • Chapter
  • First Online:
Quality of Spatial Data in Command and Control System

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 168))

  • 280 Accesses

Abstract

Until DGI became widely used, commanders and staff got information about the area of activity first of all from paper models of landscape, i.e. from maps. International Cartographic Association (ICA) defines a map as (ICA in International Cartographic Association. Retrieved July 2014, from International Cartographic Association: http://icaci.org/mission/, 2014): “A map is a symbolized representation of geographic reality, representing selected features or characteristics, resulting from the creative effort of its author’s execution of choices, and is designed for use when spatial relationships are of primary relevance.” The efficiency of decision-making processes using maps has always been significantly influenced by their quality. Quality prepared and up-to-date maps enable to get detailed information about the area of activity that is necessary for making optimal decisions. For the needs of decision-making processes, there are maps published that correspond to the given needs, e.g. units of integrated rescue systems or armed forces, and they are usually produced by state organizations that guarantee its constant quality and regular updating.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ArcGIS. (2015). ArcGISHelp. Retrieved from www.esri.com.

  • Brown, J. D., & Hauvelink, G. M. (2007). The Data Uncertainty Engine (DUE): A software tool for assessing and simulating environmental variables. Computers & Geosciences, 33(2), 172–190.

    Article  Google Scholar 

  • CUZK. (2018). (State Administration of Land Surveying and Cadastre, Land Survey Office). Retrieved 10 2017, from Geoportal CUZK—Access to map products and services: http://geoportal.cuzk.cz/.

  • Davvaz, B., & Cristea, I. (2015). Fuzzy algebraic hyperstructures. Studies in Fuzziness and soft computing, 321.

    Google Scholar 

  • DGIWG-103. (2008). Digital Geographic Information Exchange Standard (DIGEST)—Metadata Profile of ISO19115 and ISO 19139 (2.0.0—16 December 2008 ed.). DGIWG. Retrieved from https://www.dgiwg.org/dgiwg/.

  • DGIWG-500. (2010). Implementation guide to the DGIWG Feature Data Dictionary (DFDD) (2.2.2—19 July 2010 ed.). DGIWG.

    Google Scholar 

  • Esri. (2013). ArcGIS user documentation. Copyright © 1995–2013 Esri.

    Google Scholar 

  • Fotheringham, A. S. (2000). Spatial models and GIS. London: Taylor & Francis.

    Google Scholar 

  • Hoskova, S., & Cristea, I. (2010). Fuzzy pseudotopological hypergroupoids. Iranian Journal of fuzzy sets, 4(6), 11–19.

    MATH  Google Scholar 

  • Hubacek, M., Kovarik, V., & Kratochvil, V. (2016). Analysis of influence of terrain relief roughness on DEM accuracy generated from LIDAR in the Czech Republic territory. In International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, XLI-B4 (Vol. 41, pp. 25–30). Prague: ISPRS. https://doi.org/10.5194/isprsarchives-xli-b4-25-2016.

  • ICA. (2014). International Cartographic Association. Retrieved July 2014, from International Cartographic Association: http://icaci.org/mission/.

  • INSPIRE. (2011). European Commission—INSPIRE. (European Commission) Retrieved 12 23, 2011, from European Commission—INSPIRE: http://inspire.jrc.ec.europa.eu/index.cfm.

  • ISO. (2006). ISO 19138—geographic information—data quality measures. Retrieved 2011, from ISO—Interational Organization for Standardization: http://www.iso.org/iso/catalogue_detail.htm?csnumber=32556.

  • ISO. (2013). ISO 19157:2013 geographic information—data quality. Retrieved from International Organization for Standardization: https://www.iso.org/standard/32575.html.

  • ISO. (2017). ISO/TC 211 geographic information/geomatics. Retrieved from International Organization for Standardization: https://www.iso.org/committee/54904/x/catalogue/.

  • Jacobsson, A., & Giversen, J. (2007). Eurogeographics. Retrieved 2009, from http://www.eurogeographics.org/documents/Guidelines_ISO19100_Quality.pdf.

  • JRC. (2010). INSPIRE data specification on hydrography—guidelines. Retrieved 11 2011, from EU—INSPIRE–INSPIRE Registry: http://inspire.jrc.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecification_HY_v3.0.1.pdf.

  • JRC. (2011). Data specification on natural risk zones—draft guidelines. Retrieved 2012, from EU—INSPIRE–INSPIRE Registry: http://inspire.jrc.ec.europa.eu/documents/Data_Specifications/.

  • Kratochvíl, V. (2000). Geodetic networks—application of the least squares method and the transformation of coordinates (in Czech). Brno: Military Academy.

    Google Scholar 

  • Kresse, W., & Danko, D. M. (2012). Handbook of geographic information. Berlin Heidelberg: Springer. https://doi.org/10.1007/978-3-540-72680-7..

    Book  Google Scholar 

  • Kubíček, P., Šašinka, Č., Stachoň, Z., Štěrba, Z., Apeltauer, J., & Urbánek, T. (2017). Cartographic design and usability of visual variables for linear features. Cartographic Journal, 54(1), 91–102. https://doi.org/10.1080/00087041.2016.1168141.

    Article  Google Scholar 

  • Lloyd, C. D. (2011). Local models for spatial analysis. Boca Raton: Taylor & Francis LLC.

    MATH  Google Scholar 

  • Longley, P. A., Goodchild, M. J., Maguire, D. J., & Rhind, D. W. (2016). Geographic Information Science and Systems (4th ed.). Wiley.

    Google Scholar 

  • Maturo, F., Fortuna, F., & Di Battista, T. (2018). Testing equality of functions across multiple experimental conditions for different ability. Social Indicators Research, 1–21.

    Google Scholar 

  • Miles, L. D. (1989). Techniques of value analysis engineering (3rd ed.). USA: Eleanor Miles Walker.

    Google Scholar 

  • MoD-GeoS. (2013). Catalogue of the topographic objects DMU25 (7.3 ed.). Dobruska: Ministry of Defence of the Czech Republic, Geographic Service.

    Google Scholar 

  • Open GIS Consortium (OGC). (2010, October 18). WEB processing service. Retrieved 09 18, 2015, from OGC: Making location count: http://www.opengeospatial.org/standards/wps.

  • Reznik, T. (2013). Geographic information in the age of the INSPIRE directive: Discovery, download and use for geographical research. Geografie, 118(1), 77–93.

    MathSciNet  Google Scholar 

  • Shekar, S., & Xiong, H. (2008). Encyclopedia of GIS. Berlin: Springer.

    Google Scholar 

  • Sklenak, V., Berka, P., Rauch, J., Strossa, P., & Svatek, V. (2001). Data, information, knowledge, and internet (data, informace, znalosti a Internet, In Czech). Praha: C.H. Beck.

    Google Scholar 

  • Snyder, J. P. (1987). Map projections—a working manual. Washington, USA: U.S.Geological Survey.

    Google Scholar 

  • Štampach, R., Kubíček, P., & Herman, L. (2015). Dynamic visualization of sensor measurements: Context based approach. Quaestiones Geographicae, 34(3), 117–128. https://doi.org/10.1515/quageo-2015-0020.

    Article  Google Scholar 

  • Talhofer, V. (2007). Elements of map projections (Základy matematické kartografie, In Czech). Brno: Univerzita obrany.

    Google Scholar 

  • Tomlin, C. D. (1990). Geographic information systems and cartographic modeling. New Jersey: Prentice-Hall Inc.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Václav Talhofer .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Talhofer, V., Hošková-Mayerová, Š., Hofmann, A. (2019). Quality of Digital Geographic Data and Information. In: Quality of Spatial Data in Command and Control System. Studies in Systems, Decision and Control, vol 168. Springer, Cham. https://doi.org/10.1007/978-3-319-94562-0_2

Download citation

Publish with us

Policies and ethics