Leibniz’s Syncategorematic Actual Infinite

  • Richard T. W. ArthurEmail author
Part of the The New Synthese Historical Library book series (SYNL, volume 76)


It is well known that Leibniz advocated the actual infinite, but that he did not admit infinite collections or infinite numbers. But his assimilation of this account to the scholastic notion of the syncategorematic infinite (more accurately, the infinite syncategorematically understood) has given rise to controversy. A common interpretation is that in mathematics Leibniz’s syncategorematic infinite is identical with the Aristotelian potential infinite, so that it applies only to ideal entities, and is therefore distinct from the actual infinite that applies to the actual world. Against this, I argue in this paper that Leibniz’s actual infinite, understood syncategorematically, applies to any entities that are actually infinite in multitude, whether numbers, actual parts of matter, or monads. It signifies that there are more of them than can be assigned a number, but that there is no infinite number or collection of them (the categorematic infinite), which notion involves a contradiction. Similarly, to say that a magnitude is actually infinitely small in the syncategorematic sense is to say that no matter how small a magnitude one takes, there is a smaller, but there are no actual infinitesimals. In geometry one may calculate with expressions apparently denoting such entities, on the understanding that they are fictions, standing for variable magnitudes that can be made arbitrarily small, so as to produce demonstrations that there is no error in the resulting expressions.


  1. Antognazza, M. R. (2015). The Hypercategorematic Infinite. Leibniz Review, 25, 5–30.CrossRefGoogle Scholar
  2. Arthur, R. T. W. (2008). Leery Bedfellows: Newton and Leibniz on the status of infinitesimals. In U. Goldenbaum & D. Jesseph (Eds.), Infinitesimal differences: Controversies between Leibniz and his contemporaries (pp. 7–30). Berlin: De Gruyter.Google Scholar
  3. Arthur, R. T. W. (2011). Presupposition, aggregation, and Leibniz’s argument for a plurality of substances. Leibniz Review, 21, 91–116.CrossRefGoogle Scholar
  4. Arthur, R. T. W. (2013a). Leibniz’s syncategorematic infinitesimals, smooth infinitesimal analysis, and second order differentials. Archive for History of Exact Sciences, 67, 553–593.CrossRefGoogle Scholar
  5. Arthur, R. T. W. (2013b). Leibniz’s theory of space. Foundations of Science, 18(3), 499–528.CrossRefGoogle Scholar
  6. Bosinelli, F. C. M. (1991). Über Leibniz’ Unendlichkeitstheorie. Studia Leibnitiana Bd. 23 H. 2, 151–169.Google Scholar
  7. Breger, H. (1986). Leibniz, Weyl und das Kontinuum. In A. Heinekamp (Ed.), Beiträge zur Wirkungs- und Rezeptionsgeschichte von Gottfried Wilhelm Leibniz (Studia Leibnitiana Supplementa 26) (pp. 316–330). Stuttgart: Franz Steiner.Google Scholar
  8. Breger, H. (1990). Das Kontinuum bei Leibniz, 53–67 in Lamarra; reprinted in (Breger 2016a), pp. 115–126.Google Scholar
  9. Breger, Herbert. (1992). Le continu chez Leibniz, 76–84 Le labyrinth du continu, Jean-Michel Salanskis Hourya Sinaceur Paris: Springer; reprinted in (Breger 2016a), pp. 127–135.Google Scholar
  10. Breger, H. (2008). Leibniz’s calculation with compendia, 185–198 in (Goldenbaum and Jesseph 2008); reprinted in (Breger 2016a), pp. 147–158.Google Scholar
  11. Breger, H. (2016a). In W. Li (Ed.), Kontinuum, analysis, informales—Beiträge zur Mathemathik und Philosophie von Leibniz. Berlin-Heidelberg: Springer.Google Scholar
  12. Breger, H. (2016). On the grain of sand and heaven’s infinity. In W. Li (Ed.), Für unser Glück oder das Glück anderer (pp. 63–96). Hildesheim-Zürich-New York: Georg Olms Verlag. Hildesheim-Zürich-New York.Google Scholar
  13. Goddu, A. (1984). The physics of William of Ockham. Leiden and Cologne: Brill Academic Publishing.Google Scholar
  14. Ishiguro, H. (1990). Leibniz’s philosophy of logic and language (2nd ed.). Cambridge: Cambridge University Press.Google Scholar
  15. Jesseph, D. (1998). Truth in fiction: Origins and consequences of Leibniz’s Doctrine of infinitesimal magnitudes. Perspectives on Science, 6, 6–40.Google Scholar
  16. Jesseph, D. (2008). Leibniz and the foundations of the calculus: The question of the reality of infinitesimal magnitudes. In U. Goldenbaum & D. Jesseph (Eds.), Infinitesimal differences: Controversies between Leibniz and his contemporaries (pp. 215–233). Berlin: De Gruyter.Google Scholar
  17. Knobloch, E. (2002). Leibniz’s rigorous foundation of infinitesimal geometry by means of Riemannian Sums. Synthese, 133, 59–73.CrossRefGoogle Scholar
  18. Leibniz, G. W. (1969). Philosophical papers and letters (L. Loemker, Ed. and Trans.). 2nd. ed. Dordrecht: D. Reidel, Cited as L.Google Scholar
  19. Leibniz, G. W. (1971). In C. I. Gerhardt (Ed.), Leibnizens Mathematische Schriften. Berlin: Asher and Schmidt, 1849–1863. Reprint Hildesheim: Georg Olms, 7 vols. Cited as GM.Google Scholar
  20. Leibniz, G. W. (1978). In C. I. Gerhardt (Ed.), Die Philosophische Schriften von Gottfried Wilhelm Leibniz. Berlin: Weidmann, 1875–1890. Reprint Hildesheim/New York: Georg Olms, 7 vols. Cited as GP.Google Scholar
  21. Leibniz, G. W. (1981). New essays on human understanding (P. Remnant & J. Bennett, Ed. and Trans.). Cambridge: Cambridge University Press, Cited as NE.Google Scholar
  22. Leibniz, G. W. (2007). The Leibniz-Des bosses correspondence (selected, edited and translated, with an introductory essay: Look, B., Rutherford, D.). New Haven: Yale University Press, Cited as LDB.Google Scholar
  23. Leibniz, G. W. (2011). The Labyrinth of the Continuum: Writings of 1672 to 1686 (selected, edited and translated, with an introductory essay: Arthur, R. T. W.). New Haven: Yale University Press, Cited as LLC.Google Scholar
  24. Leibniz, G. W. (2013). The Leibniz-De Volder correspondence (translated, edited and with an Introduction: Lodge, P.). New Haven: Yale University Press, Cited as LDV.Google Scholar
  25. Leibniz, G. W. (1923). In Akademie der Wissenschaften der DDR (Ed.), Sämtliche Schriften und Briefe. Darmstadt: Akademie-Verlag; cited by series, volume and page, as A VI 2, 123, etc.Google Scholar
  26. Levey, S. L. (2008). Archimedes, infinitesimals, and the law of continuity: On Leibniz’s fictionalism. In U. Godenbaum & D. Jesseph (Eds.), Infinitesimal differences: Controversies between Leibniz and his contemporaries (pp. 107–133). Berlin: De Gruyter.Google Scholar
  27. Marshall, D. B. (2011). Leibniz: Geometry, physics, and idealism. Leibniz Review, 21, 9–32.CrossRefGoogle Scholar
  28. Moore, A. W. (1991). The infinite. London: Routledge.Google Scholar
  29. Nachtomy, O. (2011). A tale of two thinkers, one meeting, and three degrees of infinity: Leibniz and Spinoza (1675–8). British Journal for the History of Philosophy, 19(5), 935–961.CrossRefGoogle Scholar
  30. Nachtomy, O. (2016). Infinite and limited: On Leibniz’s view of created beings. Leibniz Review, 26, 179–196.CrossRefGoogle Scholar
  31. Rabouin, D. (2015). Leibniz’s rigorous foundations of the method of indivisibles. In V. Julien (Ed.), Seventeenth-century indivisibles revisited (pp. 347–364). Switzerland: Springer.CrossRefGoogle Scholar
  32. Sereda, K. (2015). Leibniz’s relational conception of number. Leibniz Review, 25, 31–54.CrossRefGoogle Scholar
  33. Uckelman, S. L. (2015). The logic of categorematic and syncategorematic infinity. Synthese, 192, 2361–2377.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Philosophy DepartmentMcMaster UniversityHamiltonCanada

Personalised recommendations