Categorization of the Context Within the Medical Domain

  • Hicham AjamiEmail author
  • Hamid McheickEmail author
  • Lokman Saleh
  • Rania Taleb
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10898)


The context itself has multiple meanings may vary according to the domain of application. This contextual flexibility was behind the emergence of so such huge number of context definitions. Nevertheless, all the proposed definitions do not provide solid ground for systems developers’ expectations, especially in healthcare domain [1]. This issue prompted researchers to divide the context into a set of concepts that would facilitate organizing of contextual knowledge. The conventional taxonomies of context are always too complex, and we need to fight to make them useful in the intended application area. In this paper, we propose a new context classification which covers almost all the context aspects that we may need to develop a tele-monitoring system for chronic disease management.


Healthcare Pervasive computing Context categorization Medical context 


  1. 1.
    Kurti, A.: Exploring the multiple dimensions of context, Ph.D. thesis, Växjö University Press (2009)Google Scholar
  2. 2.
    Rey, G., Coutaz, J.: The Contextor Infrastructure for Context-Aware Computing. Engineering HCI research group, CLIPS IMAG, Grenoble, France, June 2004Google Scholar
  3. 3.
    Sen, J., Ukil, A.: A QoS-aware end-to-end connectivity management algorithm for mobile applications. In: Proceedings of the Third Annual ACM Bangalore Conference, Bangalore, India, pp. 1–9, 22–23 January 2010Google Scholar
  4. 4.
    Dey, A., Abowd, G., Salber, D.: A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications. Human-Computer Interaction (2000)Google Scholar
  5. 5.
    Lasierra, N.: A three stage ontology-driven solution to provide personalized care to chronic patients at home. J. Biomed. Inform. 46, 516–552 (2013)CrossRefGoogle Scholar
  6. 6.
    Schilit, B.: Disseminating active map information to mobile hosts. IEEE Netw. 8(5), 22–32 (1994)CrossRefGoogle Scholar
  7. 7.
    Ryan, N.: Enhanced Reality Fieldwork: The Context-Aware Applications in Archaeology, vol. 23 (1997)Google Scholar
  8. 8.
    Hull, R., Neaves, P., Bedford-Roberts, J.: Towards situated computing. In: 1st International Symposium on Wearable Computers, pp. 146–153 (1997)Google Scholar
  9. 9.
    Pascoe, J.: Adding generic contextual capabilities to wearable computers. In: 2nd International Symposium on Wearable Computers, pp. 92–99 (1998)Google Scholar
  10. 10.
    Franklin, D.: Spring Symposium on Intelligent Environments, Technical report SS-98-02, pp. 155–160 (1998)Google Scholar
  11. 11.
    Dey, A.K., Abowd, G.D., Wood, A.: CyberDesk: a framework for providing self-integrating context-aware services. Knowl.-Based Syst. 11, 3–13 (1999)CrossRefGoogle Scholar
  12. 12.
    Chen, G.: A survey of context-aware mobile computing research, vol. 1, no. 2.1, pp. 2–1. Technical report TR2000-381, Dartmouth College (2000)Google Scholar
  13. 13.
    Petrelli, D.: Modeling context is like taking pictures. In: CHI2000 Workshop (2000)Google Scholar
  14. 14.
    Gwizdka, J.: What’s in the context. In: CHI2000 Workshop (2000)Google Scholar
  15. 15.
    Klemke, R.: Context framework. In: Proceedings of the International Conference on Practical Aspects of Knowledge Management, 30–31 October, Basel, Switzerland (2000)Google Scholar
  16. 16.
    Gross, T., Specht, M.: Awareness in context-aware information systems. Tagungsband der 1. Fachübergreifenden Konferenz “Mensch & Computer”, Bonn, Germany (2001)Google Scholar
  17. 17.
    Hofer, T.: Context-awareness on mobile devices – the hydrogen approach. In: Proceedings of the 36th Annual Hawaii International Conference on System Sciences, pp. 292–302 (2002)Google Scholar
  18. 18.
    Aaltonen, A.: A Context Visualization Model for Wearable Computers. SEMWEB (2002)Google Scholar
  19. 19.
    Henricksen, K.A.: Framework for Context-Aware Pervasive Computing Applications. Ph.D. thesis, University of Queensland, Queensland (2003)Google Scholar
  20. 20.
    Prekop, P., Burnett, M.: Activities, context and ubiquitous computing. Comput. Commun. 26(11), 1168–1176 (2003)CrossRefGoogle Scholar
  21. 21.
    Mayrhofer, R.: An Architecture for Context Prediction. Ph.D. thesis, Johannes Kepler University of Linz, Austria, October 2004Google Scholar
  22. 22.
    Wang, X.H., Dong, J.S., Chin, C.Y., Hettiarachchi, S.R.: Semantic space: an infrastructure for smart spaces. IEEE Pervasive Comput. 3(2), 32–39 (2004)CrossRefGoogle Scholar
  23. 23.
    Chen, H.A.: An Ontology for Context-Aware Pervasive Computing Environments, vol. 18, no. 3, pp. 197–207. Cambridge University Press (2004)Google Scholar
  24. 24.
    Brézillon, P.: Learning and explanation in a context-based representation: Application to incident solving on subway lines (2004)Google Scholar
  25. 25.
    Van Bunningen, A.H., Feng, L., Apers, P.M.: Context for ubiquitous data management. In: Ubiquitous Data Management, 2005, UDM 2005, International Workshop on IEEE, pp. 17–24, April 2005Google Scholar
  26. 26.
    Chaari, T., Laforest, F., Celantano, A.: Design of context-aware applications based on web services. Technical report, LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard (2004)Google Scholar
  27. 27.
    Chen, F.J., Warden, A.C., Chang, H.T.: Motivators that do not motivate: the case of Chinese EFL learners and the influence of culture on motivation. TESOL Q. 39(4), 609–633 (2005)CrossRefGoogle Scholar
  28. 28.
    Razzaque, M.A., Dobson,S., Nixon, P.: Categorization and modeling of quality in context information. In Proceedings of the IJCAI 2005, Workshop on AI and Autonomic Communications. Edinburgh, Scotland (2005)Google Scholar
  29. 29.
    Miao, Y., Tao, X., Shen, Z., Liu, Z., Miao, C.: The equivalence of cognitive map, fuzzy cognitive map and multi value fuzzy cognitivemap. In: IEEE International Conference on Fuzzy Systems (2006)Google Scholar
  30. 30.
    Guan, J., Xiang, P., McBride, R., Bruene, A.: Achievement goals, social goals and students’ reported persistence and effort in high school PE. J. Teach. PE 25, 58–74 (2006)Google Scholar
  31. 31.
    Chong, S.K.: Contextaware sensors and data muling. In: Context Awareness for Selfmanaging Systems (Devices, Applications and Networks) Proceeding, pp. 103–117. VDE-Verlag, Berlin (2007)Google Scholar
  32. 32.
    Zimmermann, A., Lorenz, A., Oppermann, R.: An operational definition of context. In: Kokinov, B., Richardson, Daniel C., Roth-Berghofer, Thomas R., Vieu, L. (eds.) CONTEXT 2007. LNCS (LNAI), vol. 4635, pp. 558–571. Springer, Heidelberg (2007). Scholar
  33. 33.
    Miraoui, M., Tadj, C., Amar, C.B.: Architectural survey of context-aware systems in pervasive computing environment. Ubiquit. Comput. Commun. J. 3, 1–9 (2008)Google Scholar
  34. 34.
    Kurti, A.: Exploring the multiple dimensions of context: Implications for the design and development of innovative technology-enhanced learning environments. Stockholm University, 28 May 2009Google Scholar
  35. 35.
    Soylu, A., De Causmaecker1, P., Desmet, P.: Context and adaptivity in pervasive engineering. J. Softw. 4(9), 992–1013 (2009)Google Scholar
  36. 36.
    Jun-zhong, G.: Context aware computing. J. East China Normal Univ. (Nat. Sci.) 5, 1–20 (2009)Google Scholar
  37. 37.
    Tamine-Lechani, L., Boughanem, M., Daoud, M.: Evaluation of contextual information retrieval effectiveness: overview of issues and research. Knowl. Inf. Syst. 24(1), 1–34 (2010)CrossRefGoogle Scholar
  38. 38.
    Rizou, S.: A system for distributed context reasoning. In: 2010 Sixth International Conference on Autonomic and Autonomous Systems (ICAS), pp. 84–89, March 2010Google Scholar
  39. 39.
    Nageba, E.: A model driven ontology-based architecture for supporting the quality of services in pervasive telemedicine applications. In: Proceedings the 3rd International Conference on Pervasive Computing Technologies for Healthcare, London UK, pp. 1–8. IEEE Computer Society, April 2009Google Scholar
  40. 40.
    Kim, S.: Smart learning services based on smart cloud computing. Sensors 11(8), 7835–7850 (2011)CrossRefGoogle Scholar
  41. 41.
    Guo, B.: The Internet of Things to embedded intelligence. World Wide Web 16(4), 399–420 (2013)CrossRefGoogle Scholar
  42. 42.
    Boughareb, D.: Context in information retrieval. In: International Conference on Control, Decision and Information Technologies (CoDIT), France, 3–5 November 2014Google Scholar
  43. 43.
    Ameyed, D: Modélisation et spécification formelle de contexte et sa prédiction dans les systèmes diffus. Ph.D. thesis, L’École de technologie supérieure (ETS) (2016)Google Scholar
  44. 44.
    Klein, B.N.: On the importance of time synchronization for context aware applications. Ph.D. thesis, Kassel University Press (2011)Google Scholar
  45. 45.
    Bardram, J.: Applications of context-aware computing in hospital work. In: Proceedings of 2004 ACM Symposium on Applied Computing, pp. 1574–1579. ACM Press (2004)Google Scholar
  46. 46.
    Levandoski, J., Sarwat, M., Eldawy, A., Mokbel, M.: LARS: a location-aware recommender system. In: ICDE, pp. 450–461 (2012)Google Scholar
  47. 47.
    Xu, X., Tang, J., Zhang, X., Liu, X., Zhang, H., Qiu, Y.: Exploring techniques for vision based human activity recognition: methods, systems, and evaluation. Sensors 13(2), 1635–1650 (2013)CrossRefGoogle Scholar
  48. 48.
    Ajami, H., Mcheick, H., Elkhaled, Z.: Survey of health care context models: prototyping of healthcare context framework. Dans: Summer Simulation Multi-Conference (SummerSim 2016), Montreal, Quebec, 24–27 July 2016Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Computer Science DepartmentUniversité du Québec à ChicoutimiChicoutimiCanada
  2. 2.Computer Science Department, MontréalUniversité du Québec à MontréalMontréalCanada

Personalised recommendations