Technological Approach for Early and Unobtrusive Detection of Possible Health Changes Toward More Effective Treatment

  • Firas KaddachiEmail author
  • Hamdi Aloulou
  • Bessam Abdulrazak
  • Philippe Fraisse
  • Mounir Mokhtari
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10898)


Aging process is related to serious decline in physical and cognitive functions. Thus, early detection of these health changes is important to improve classical assessments that are mainly based on interviews, and are insufficient to early diagnose all possible health changes. Therefore, we propose a technological approach that analyzes elderly people behavior on a daily basis, employs unobtrusive monitoring technologies, and applies statistical techniques to identify continuous changes in monitored behavior. We detect significant long-term changes that are highly related to physical and cognitive problems. We also present a real validation through data collected from 3-year deployments in nursing-home rooms.


Aging-related decline Early health change detection Unobtrusive technologies Statistical change-detection techniques 



We give our special thanks to Saint Vincent de Paul nursing home in Occagnes, France. Our deployment in this nursing home is also supported by VHP inter@ctive project and the Quality Of Life chair.

Our work is part of the European project City4Age that received funding from the Horizon 2020 research and innovation program under grant agreement number 689731.


  1. 1.
    Bureau, U.S.C.: United States Census Bureau: International Data Base (2018)Google Scholar
  2. 2.
    Ferri, C.P., et al.: Global prevalence of dementia: a Delphi consensus study. Lancet 366(9503), 2112–2117 (2005)CrossRefGoogle Scholar
  3. 3.
    Cockrell, J.R., Folstein, M.F.: Mini-mental state examination. In: Principles and Practice of Geriatric Psychiatry, pp. 140–141 (2002)Google Scholar
  4. 4.
    Mathias, S., et al.: Balance in elderly patients: the “get-up and go” test. Arch. Phys. Med. Rehabil. 67(6), 387–389 (1986)Google Scholar
  5. 5.
    Vellas, B., et al.: The mini nutritional assessment (MNA) and its use in grading the nutritional state of elderly patients. Nutrition 15(2), 116–122 (1999)CrossRefGoogle Scholar
  6. 6.
    Lafont, S., et al.: Relation entre performances cognitives globales et dépendance évaluée par la grille aggir. Revue d’épidémiologie et de santé publique 47(1), 7–17 (1999)Google Scholar
  7. 7.
    Reisberg, B., et al.: Behavioral pathology in Alzheimer’s disease (BEHAVE-AD) rating scale. Int. Psychogeriatr. 8(S3), 301–308 (1997)CrossRefGoogle Scholar
  8. 8.
    Wilson, D., et al.: In-home assessment of the activities of daily living of the elderly. In: Extended Abstracts of CHI 2005: Workshops-HCI Challenges in Health Assessment (2005)Google Scholar
  9. 9.
    Holsinger, T., et al.: Does this patient have dementia? JAMA 297(21), 2391–2404 (2007)CrossRefGoogle Scholar
  10. 10.
    Boockvar, K.S., Lachs, M.S.: Predictive value of nonspecific symptoms for acute illness in nursing home residents. J. Am. Geriatr. Soc. 51(8), 1111–1115 (2003)CrossRefGoogle Scholar
  11. 11.
    Sloane, P.D., et al.: The public health impact of Alzheimer’s disease, 2000–2050: potential implication of treatment advances. Annu. Rev. Public Health 23, 213–231 (2002)CrossRefGoogle Scholar
  12. 12.
    Rantz, M., Skubic, M., Miller, S., Krampe, J.: Using technology to enhance aging in place. In: Helal, S., Mitra, S., Wong, J., Chang, C.K., Mokhtari, M. (eds.) ICOST 2008. LNCS, vol. 5120, pp. 169–176. Springer, Heidelberg (2008). Scholar
  13. 13.
    Rantz, M.J., et al.: The future of long-term care for the chronically ill. Nurs. Adm. Q. 25(1), 51–58 (2000)CrossRefGoogle Scholar
  14. 14.
    Demiris, G., et al.: Older adults’ attitudes towards and perceptions of ‘smart home’ technologies: a pilot study. Med. Inform. Internet Med. 29(2), 87–94 (2004)CrossRefGoogle Scholar
  15. 15.
    Kaddachi, F., Aloulou, H., Abdulrazak, B., Fraisse, P., Mokhtari, M.: Unobtrusive technological approach for continuous behavior change detection toward better adaptation of clinical assessments and interventions for elderly people. In: Mokhtari, M., Abdulrazak, B., Aloulou, H. (eds.) ICOST 2017. LNCS, vol. 10461, pp. 21–33. Springer, Cham (2017). Scholar
  16. 16.
    Kaddachi, F., et al.: Technological approach for behavior change detection toward better adaptation of services for elderly people. BIOSTEC 2017, 96 (2017)Google Scholar
  17. 17.
    Aloulou, H., et al.: An adaptable and flexible framework for assistive living of cognitively impaired people. IEEE J. Biomed. Health Inform. 18(1), 353–360 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Aloulou, H., et al.: Deployment of assistive living technology in a nursing home environment: methods and lessons learned. BMC Med. Inform. Decis. Mak. 13(1), 42 (2013)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Bourke, A.K., et al.: Fall detection algorithms for real-world falls harvested from lumbar sensors in the elderly population: a machine learning approach. In: 2016 IEEE 38th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), pp. 3712–3715. IEEE (2016)Google Scholar
  20. 20.
    Lally, P., et al.: How are habits formed: modelling habit formation in the real world. Eur. J. Soc. Psychol. 40(6), 998–1009 (2010)CrossRefGoogle Scholar
  21. 21.
    Sprint, G., et al.: Unsupervised detection and analysis of changes in everyday physical activity data. J. Biomed. Inform. 63, 54–65 (2016)CrossRefGoogle Scholar
  22. 22.
    Dodge, H.H., et al.: Web-enabled conversational interactions as a method to improve cognitive functions: results of a 6-week randomized controlled trial. Alzheimer’s Dement.: Transl. Res. Clin. Interv. 1(1), 1–12 (2015)Google Scholar
  23. 23.
    Petersen, J., et al.: Unobtrusive phone monitoring as a novel measure of cognitive function. Alzheimer’s Dement. J. Alzheimer’s Assoc. 10(4), P366–P367 (2014)CrossRefGoogle Scholar
  24. 24.
    Reddy, V.R., et al.: PerDMCS: Weighted fusion of PPG signal features for robust and efficient diabetes mellitus classification. In: HEALTHINF, pp. 553–560 (2017)Google Scholar
  25. 25.
    Sashima, A., et al.: A telecare system on smart watches that communicate with wireless bio sensors. In: HEALTHINF, pp. 429–434 (2017)Google Scholar
  26. 26.
    Dalakleidi, K., et al.: A modified all-and-one classification algorithm combined with the bag-of-features model to address the food recognition task. In: HEALTHINF, pp. 284–290 (2017)Google Scholar
  27. 27.
    Magill, E., Blum, J.M.: Personalised ambient monitoring: supporting mental health at home. In: Advances in Home Care Technologies: Results of the Match Project, pp. 67–85 (2012)Google Scholar
  28. 28.
    Perera, C., et al.: Big data privacy in the Internet of Things era. IT Prof. 17(3), 32–39 (2015)CrossRefGoogle Scholar
  29. 29.
    Basseville, M.: Statistical methods for change detection. In: Control Systems, Robotics and AutomatioN-Volume XVI: Fault Analysis and Control, p. 130 (2009)Google Scholar
  30. 30.
    Taylor, W.A.: Change-point analysis: a powerful new tool for detecting changes (2000).
  31. 31.
    Mesnil, B., Petitgas, P.: Detection of changes in time-series of indicators using CUSUM control charts. Aquat. Living Resour. 22(2), 187–192 (2009)CrossRefGoogle Scholar
  32. 32.
    Bland, J.M., Altman, D.G.: Comparing methods of measurement: why plotting difference against standard method is misleading. Lancet 346(8982), 1085–1087 (1995)CrossRefGoogle Scholar
  33. 33.
    Killick, R., et al.: Optimal detection of changepoints with a linear computational cost. J. Am. Stat. Assoc. 107(500), 1590–1598 (2012)MathSciNetCrossRefGoogle Scholar
  34. 34.
    City4Age: Elderly-friendly city services for active and healthy aging (2018).

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Firas Kaddachi
    • 1
    Email author
  • Hamdi Aloulou
    • 2
  • Bessam Abdulrazak
    • 3
  • Philippe Fraisse
    • 1
  • Mounir Mokhtari
    • 4
  1. 1.Montpellier Laboratory of Informatics, Robotics and Microelectronics (LIRMM)MontpellierFrance
  2. 2.Digital Research Center of SfaxSakiet EzzitTunisia
  3. 3.University of SherbrookeSherbrookeCanada
  4. 4.Institut Mines-Telecom (IMT)ParisFrance

Personalised recommendations