Advertisement

Integration of Complex IoT Data with Case-Specific Interactive Expert Knowledge Feedback, for Elderly Frailty Prevention

  • Vladimir UroševićEmail author
  • Paolo Paolini
  • Christos Tatsiopoulos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10898)

Abstract

This paper describes an environment based on rich interactive diagrams, allowing the geriatricians and caregivers to access, analyze and precisely annotate or label specific granular cases of interest in a variety of heterogeneous data collected, to identify “behaviour changes” through Smart City IoT and Open Data infrastructures. The overall goal is to detect and contextualize, as early and precisely as possible, negative changes that may lead to onset of MCI/frailty in the elderly population. The environment is being developed and piloted within the City4Age project, partially funded by the EU.

Keywords

Behaviour recognition Ambient-assisted Active healthy ageing Unobtrusive Data labelling Semi-supervised Interactive dashboard Data assessments 

References

  1. 1.
    Genoe, M.R., Liechty, T., Marston, H.R., Sutherland, V.: Blogging into retirement: using qualitative online research methods to understand leisure among baby boomers. J. Leisure Res. 48(1), 15 (2016)CrossRefGoogle Scholar
  2. 2.
    Tiago, M.T., de Almeida Couto, J.P., Tiago, F.G.B., Faria, S.M.C.D.: Baby boomers turning grey. Eur. Profiles 54, 13–22 (2016)Google Scholar
  3. 3.
    Díaz Rodríguez, N.: Semantic and fuzzy modelling for human behaviour recognition in smart spaces. In: Studies on the Semantic Web, vol. 23. IOS Press Amsterdam (2016)Google Scholar
  4. 4.
    Ayyagari, P.: Preventive Health Behaviors among the Elderly. Duke University (2008)Google Scholar
  5. 5.
    Azkune, G., Almeida, A.: A scalable hybrid activity recognition approach for intelligent environments. J. LaTeX Class Files 14(8), 2015 (2015)Google Scholar
  6. 6.
    Azkune, G., Almeida, A., López-de-Ipiña, D., Chen, L.: A knowledge-driven tool for automatic activity dataset annotation. In: Angelov, P., et al. (eds.) Advances in Intelligent Systems and Computing, vol. 322, pp. 593–604. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-11313-5_52CrossRefGoogle Scholar
  7. 7.
    Copelli, S., Mercalli, M., Ricevuti, G., Venturini, L.: City4Age frailty and MCI risk model, v2, City4Age project public deliverable D 2.06 (2017)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Vladimir Urošević
    • 1
    Email author
  • Paolo Paolini
    • 2
  • Christos Tatsiopoulos
    • 1
  1. 1.Belit d.o.o. BeogradBelgradeSerbia
  2. 2.Fondazione Politecnico di MilanoMilanoItaly

Personalised recommendations