Generation of Pure Trajectories for Continuous Movements in the Rehabilitation of Lower Member Using Exoskeletons

  • María Camila Sierra Herrera
  • Octavio José Salcedo ParraEmail author
  • Javier Medina
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10898)


In this article, the analysis of pure movements of the lower limb of the human being applied to the design of exoskeletons is explained, in order to be able to obtain bases for the selection of which meet the appropriate torque requirements that can move the robot and help perform continuous trajectories. These values are based on the trajectories that are obtained by measuring the orientation of the lower limb while the patient performs pure rehabilitation movements.

Having these movements fully developed, a communication can be applied by Bluetooth protocol, in such a way that signals are sent between the two parts of the exoskeleton of the lower limb to generate a successive walk clearly necessary in the rehabilitation.


Lower limb Bluetooth communication Maximum torques Dynamic analysis Orientations 


  1. 1.
    Albán, O.A.V.: Aplicaciones de la Robótica al Campo de la Medicina. Universidad del Cauca (2007)Google Scholar
  2. 2.
    Galeano, D.: Robótica Médica. Universidad Católica Nuestra Señora de la Asunción (2016)Google Scholar
  3. 3.
    Mera, I.L.L., Daza, M.M.: Exoesqueleto para Reeducación en Pacientes con IMOC Tipo Diplejía Espástica Moderada. Universidad del Cauca (2010)Google Scholar
  4. 4.
    Sierra, H.A.: Control de un Exoesqueleto para Asistir en la Bipedestación y la Marcha de una Persona. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, David Martínez Alberto., “Análisis Cinemático y Dinámico del Robot Pasibot”., Universidad Carlos III de Madrid (2008)Google Scholar
  5. 5.
    Giraldo, A.F.M.: Caracterización Mecánica y Dinámica del Robot SCARA UV-CERMA (2014)Google Scholar
  6. 6.
    Instituto de Biomecánica de Valencia. GAIT Ortesis Inteligente para Rodilla y Tobillo (2006)Google Scholar
  7. 7.
    Burgos, P.S.J.: Desarrollo de un interfaz de usuario para guante de datos 5DT Data Glove. Universidad de Valladolid (2017)Google Scholar
  8. 8.
    Lajeunesse, V., Vincent, C., Routhier, F., Careau, E., Michaud, F.: Exoskeletons’ design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury. J. Disabil. Rehabil. Assist. Technol. 11(7), 535–547 (2016)CrossRefGoogle Scholar
  9. 9.
    Huo, W., et al.: Lower limb wearable robots for assistance and rehabilitation: a state of the art. IEEE Syst. J. 10(3), 1068–1081 (2014)CrossRefGoogle Scholar
  10. 10.
    Baluch., T.H., et al.: Kinematic and dynamic analysis of a lower limb exoskeleton. International Science Index (2012)Google Scholar
  11. 11.
    Chen, B., et al.: Recent developments and challenges of lower extremity exoskeletons. J. Orthop. Transl. 5, 26–37 (2016)Google Scholar
  12. 12.
    Kwak, N.S., Müller, K.R., Lee, S.W.: A lower limb exoskeleton control system based on steady state visual evoked potentia. J. Neural Eng. 12, 056009 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • María Camila Sierra Herrera
    • 1
  • Octavio José Salcedo Parra
    • 1
    • 2
    Email author
  • Javier Medina
    • 3
  1. 1.Department of Systems and Industrial Engineering, Faculty of EngineeringUniversidad Nacional de ColombiaBogotá D.CColombia
  2. 2.Faculty of Engineering, Intelligent Internet Research GroupUniversidad Distrital “Francisco José de Caldas”Bogotá D.CColombia
  3. 3.Faculty of Engineering, GEFEM Research GroupUniversidad Distrital “Francisco José de Caldas”Bogotá D.CColombia

Personalised recommendations