Study of Critical Vital Signs Using Deep Learning

  • Diego Felipe Rodríguez Chaparro
  • Octavio José Salcedo ParraEmail author
  • Erika Upegui
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10898)


As the popularity of Deep Learning grows in the Science field, it is hard to avoid experiencing and discovering the scope of this powerful tool and all it has to offer. This work explores the possibility of using Deep Learning methodologies in the Medicine framework, oriented specifically to the study of vital signs from critical patients in the ER. Using a public domain dataset taken from Massachusetts General Hospital as well as the learning modules from Python, the objective is to use Deep Learning to calculate a patient’s chances of survival based on his vital signs.


Deep learning Emergency room Keras Python Vital signs introduction 


  1. 1.
    Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw 61, 85–117 (2015)., ISSN 0893-6080CrossRefGoogle Scholar
  2. 2.
    Webb, G.L., McSwain, N.E., Webb, W.R., Rodriguez, C.: Emergency department deaths. Am. J. Surg. 159(4), 377–379 (1990)., ISSN 0002-9610CrossRefGoogle Scholar
  3. 3.
    Bengio, S., Deng, L., Larochelle, H., Lee, H., Salakhutdinov, R.: Guest editors’ introduction: special section on learning deep architectures. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1795–1797 (2013)CrossRefGoogle Scholar
  4. 4.
    Bradley, W.G.: History of medical imaging. In: Proceedings of the American Philosophical Society, vol. 152, No. 3, pp. 349–361 (2008)Google Scholar
  5. 5.
    Gerazov, B., Conceicao, R. C.: Deep learning for tumour classification in homogeneous breast tissue in medical microwave imaging. In: IEEE EUROCON 2017 (2017)Google Scholar
  6. 6.
    Affonso, C., Rossi, A.L.D., Vieira, F.H.A., de Carvalho, A.C.P.D.L.F.: Deep learning for biological image classification. Expert Syst. Appl. 85, 114122 (2017). Scholar
  7. 7.
    Yudin, D., Zeno, B.: Event recognition on images by fine-tuning of deep neural networks. In: Abraham, A., Kovalev, S., Tarassov, V., Snasel, V., Vasileva, M., Sukhanov, A. (eds.) IITI 2017. AISC, vol. 679, pp. 479–487. Springer, Cham (2018). Scholar
  8. 8.
    Khan, S.H., Hayat, M., Bennamoun, M., Sohel, F.A., Togneri, R.: Cost-sensitive learning of deep feature representations from imbalanced data (2017)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Diego Felipe Rodríguez Chaparro
    • 1
  • Octavio José Salcedo Parra
    • 1
    • 2
    Email author
  • Erika Upegui
    • 3
  1. 1.Department of Systems and Industrial Engineering, Faculty of EngineeringUniversidad Nacional de ColombiaBogotá D.C.Colombia
  2. 2.Faculty of Engineering, Intelligent Internet Research GroupUniversidad Distrital “Francisco José de Caldas”Bogotá D.C.Colombia
  3. 3.Faculty of Engineering, GRSS-IEEE/UD & GEFEM Research GroupUniversidad Distrital “Francisco José de Caldas”Bogotá D.C.Colombia

Personalised recommendations