Skip to main content

Abstract

The first part of the chapter covers theoretical considerations and numerical modeling of higher-harmonic generation in elastic waves propagating in nonlinear prismatic waveguides, including plates, rods, and waveguides of arbitrary cross-sections and/or of inhomogeneous and anisotropic composition. The main purpose of these analyses is to identify suitable combinations of primary and secondary guided modes for the waveguide. The last part of the chapter examines the role of thermal stresses in higher-harmonic wave generation. The latter topic is relevant to the prevention of thermal buckling of slender structural components (e.g., rail tracks).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.F. Hamilton, D.T. Blackstock, Nonlinear Acoustics (Acoustical Society of America, New York, 2008)

    Google Scholar 

  2. A. Jeffrey, J. Engelbrecht, Nonlinear Waves in Solids (Springer, Berlin-New York, 1994)

    Book  MATH  Google Scholar 

  3. A.V. Porubov, Amplification of Nonlinear Strain Waves in Solids (World Scientific Pub Co, Singapore, 2003)

    Book  MATH  Google Scholar 

  4. A.M. Samsonov, Strain Solitons in Solids and how to Construct them (CRC Press, Boca Raton, 2001)

    Book  MATH  Google Scholar 

  5. M. Deng, Second-harmonic properties of horizontally polarized shear modes in an isotropic plate. Jap. J. Appl. Phys. 35, 4004–4010 (1996)

    Article  Google Scholar 

  6. M. Deng, Cumulative second-harmonic generation accompanying nonlinear shear horizontal mode propagation in a solid plate. J. Appl. Phys. 84, 3500 (1998)

    Article  Google Scholar 

  7. M. Deng, Cumulative second-harmonic generation of Lamb-mode propagation in a solid plate. J. Appl. Phys. 85, 3051 (1999)

    Article  Google Scholar 

  8. W.J.N. De Lima, M.F. Hamilton, Finite-amplitude waves in isotropic elastic plates. J. Sound Vibr. 265, 819–839 (2003)

    Article  Google Scholar 

  9. M. Deng, Analysis of second-harmonic generation of Lamb modes using a modal analysis approach. J. Appl. Phys. 94, 4152 (2003)

    Article  Google Scholar 

  10. B.A. Auld, Acoustic Fields and Waves in Solids (R.E. Krieger, Malabar, 1990)

    Google Scholar 

  11. W.J.N. De Lima, M.F. Hamilton, Finite amplitude waves in isotropic elastic waveguides with arbitrary constant cross-sectional area. Wave Motion 41, 1–11 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Deng, Assessment of accumulated fatigue damage in solid plates using nonlinear Lamb wave approach. Appl. Phys. Lett. 90, 121902 (2007)

    Article  Google Scholar 

  13. A. Srivastava, F. Lanza di Scalea, On the existence of antisymmetric or symmetric Lamb waves at nonlinear higher harmonics. J. Sound Vibr. 323, 932–943 (2009)

    Article  Google Scholar 

  14. A. Srivastava, F. Lanza di Scalea, On the existence of longitudinal or flexural waves in rods at nonlinear higher harmonics. J. Sound Vibr. 329, 1499–1506 (2010)

    Article  Google Scholar 

  15. A. Srivastava, I. Bartoli, S. Salamone, F. Lanza di Scalea, Higher harmonic generation in nonlinear waveguides of arbitrary cross-section. J. Acoust. Soc. Am. 127, 2790–2796 (2010)

    Article  Google Scholar 

  16. M.F. Muller, J.K. Kim, J. Qu, L.J. Jacobs, Characteristics of second harmonic generation of lamb waves in nonlinear elastic plates. J. Acoust. Soc. Am. 127, 2141–2152 (2010)

    Article  Google Scholar 

  17. C. Bermes, J.Y. Kim, J.M. Qu, L.J. Jacobs, Experimental characterization of material nonlinearity using Lamb waves. Appl. Phys. Lett. 90, 021901 (2007)

    Article  Google Scholar 

  18. N. Matsuda, S. Biwa, Phase and group velocity matching for cumulative harmonic generation in lamb waves. J. Appl. Phys. 109, 094903 (2011)

    Article  Google Scholar 

  19. K.H. Matlack, J.J. Wall, J.Y. Kim, J. Qu, L.J. Jacobs, H.W. Viehrig, Evaluation of radiation damage using nonlinear ultrasound. J. Appl. Phys. 111, 1–3 (2012)

    Article  Google Scholar 

  20. V.K. Chillara, C.J. Lissenden, Interaction of guided wave modes in isotropic weakly nonlinear elastic plates: higher harmonic generation. J. Appl. Phys. 111, 124909 (2012)

    Article  Google Scholar 

  21. V.K. Chillara, C.J. Lissenden, D.O. Thompson, D.E. Chimenti, Higher harmonic guided waves in isotropic weakly nonlinear elastic plates. AIP Conf. Proc. 1511, 145–150 (2013)

    Article  Google Scholar 

  22. Y. Liu, V.K. Chillara, C.J. Lissenden, On selection of primary modes for generation of strong internally resonant second harmonics in plate. J. Sound Vibr. 332, 4517–4528 (2013)

    Article  Google Scholar 

  23. V.K. Chillara, C.J. Lissenden, Analysis of second harmonic guided waves in pipes using a large-radius asymptotic approximation for axis-symmetric longitudinal modes. Ultrasonics 53, 862–869 (2013)

    Article  Google Scholar 

  24. N. Matsuda, S. Biwa, Frequency dependence of second-harmonic generation in Lamb waves. J. Nondestruct. Eval. 33, 169–177 (2014)

    Article  Google Scholar 

  25. R. Radecki, M.J. Lemay, T. Uhl, W.J. Staszewski, Z. Su, L. Cheng, P. Packo, Investigation on high–order harmonic generation of guided waves using local computation approaches: theory and comparison with analytical modelling. in 7th European Workshop on Structural Health Monitoring, 8–11 July (Nantes, France, 2014)

    Google Scholar 

  26. M. Ryles, F.H. Ngau, I. McDonald, W.J. Staszewski, Comparative study of nonlinear acoustic and Lamb wave techniques for fatigue crack detection in metallic structures. Fatigue Fract. Eng. Mech. 31, 674–683 (2008)

    Article  Google Scholar 

  27. V.K. Chillara, C.J. Lissenden, Review of nonlinear ultra sonic guided wave nondestructive evaluation: theory, numerics, and experiments. Opt. Eng. 55, 011002–011002 (2016)

    Article  Google Scholar 

  28. M. Deng, Y.X. Xiang, L.B. Liu, Time-domain analysis and experimental examination of cumulative second-harmonic generation by primary Lamb wave propagation. J. Appl. Phys. 109, 113525 (2011)

    Article  Google Scholar 

  29. Z.A. Goldberg, Interaction of plane longitudinal and transverse elastic waves. Sov. Phys. Acoust. 6, 306–310 (1961)

    Google Scholar 

  30. A.C. Eringen, E.S. Suhubi, Elastodynamics (Academic Press, New York, 1975)

    MATH  Google Scholar 

  31. A.I. Lurie, Nonlinear Elasticity (Nauka Publishers, Moscow, 1980)

    Google Scholar 

  32. J. Engelbrecht, Nonlinear Wave Processes of Deformation in Solids (Pitman Advanced Pub. Program, Boston, 1983)

    MATH  Google Scholar 

  33. K.A. Lurie, Nonlinear Theory of Elasticity (North-Holland, Amsterdam, 1990)

    MATH  Google Scholar 

  34. F.D. Murnaghan, Finite Deformations (Wiley, New York, 1951)

    Google Scholar 

  35. L.D. Landau, E.M. Lifshitz, Theory of Elasticity (Addison-Wesley Pub. Co, London, 1959)

    MATH  Google Scholar 

  36. R. Truell, C. Elbaum, B. Chick, Ultrasonic Methods in Solid State Physics (Academic Press, New York, 1969)

    Google Scholar 

  37. A.H. Meitzler, Mode coupling occurring in the propagation of elastic pulses in wires. J. Acoust. Soc. Am. 33, 435 (1961)

    Article  Google Scholar 

  38. C. Nucera, F. Lanza di Scalea, Nonlinear semi-analytical finite element algorithm for the analysis of internal resonance conditions in complex waveguides. ASCE J Eng Mech 140, 502–522 (2014)

    Article  Google Scholar 

  39. C. Nucera, F. Lanza di Scalea, Nondestructive measurement of neutral temperature in continuous welded rails by nonlinear ultrasonic guided waves. J. Acoust. Soc. Am. 136, 2561–2574 (2014)

    Article  Google Scholar 

  40. C. Nucera, F. Lanza di Scalea, Modeling of nonlinear guided waves and applications to structural health monitoring. ASCE J Comput Civ Eng 29, B40140011–B401400115 (2015)

    Article  Google Scholar 

  41. N. Apetre, M. Ruzzene, S. Hanagud, S Gopalakrishnan, Nonlinear spectral methods for the analysis of wave propagation. in 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference (Schaumburg, IL, 7–10 April, 2008)

    Google Scholar 

  42. B. Aalami, Waves in prismatic guides of arbitrary cross-section. J Appl Mech-T ASME 40, 1067–1077 (1973)

    Article  Google Scholar 

  43. P.E. Lagasse, Higher-order finite-element analysis of topographic guides supporting elastic surface-waves. J. Acoust. Soc. Am. 53, 1116–1122 (1973)

    Article  Google Scholar 

  44. L. Gavrić, Finite-element computation of dispersion properties of thin-walled waveguides. J. Sound Vib. 173, 113–124 (1994)

    Article  MATH  Google Scholar 

  45. L. Gavrić, Computation of propagative waves in free rail using a finite element technique. J. Sound Vib. 185, 531–543 (1995)

    Article  MATH  Google Scholar 

  46. K.H. Huang, S.B. Dong, Propagating waves and edge vibrations in anisotropic composite cylinders. J. Sound Vib. 96, 363–379 (1984)

    Article  MATH  Google Scholar 

  47. S. Finnveden, Spectral finite element analysis of the vibration of straight fluid-filled pipes with flanges. J. Sound Vib. 199, 125–154 (1997)

    Article  Google Scholar 

  48. A.C. Hladky Hennion, Finite element analysis of the propagation of acoustic waves in waveguides. J. Sound Vib. 194, 119–136 (1996)

    Article  Google Scholar 

  49. T. Mazuch, Wave dispersion modelling in anisotropic shells and rods by the finite element method. J. Sound Vib. 198, 429–438 (1996)

    Article  Google Scholar 

  50. U. Orrenius, S. Finnveden, Calculation of wave propagation in rib-stiffened plate structures. J. Sound Vib. 198, 203–224 (1996)

    Article  Google Scholar 

  51. I. Bartoli, A. Marzani, F. Lanza di Scalea, E. Viola, Modeling wave propagation in damped waveguides of arbitrary cross-section. J. Sound Vib. 295, 685–707 (2006)

    Article  Google Scholar 

  52. T. Hayashi, W.J. Song, J.L. Rose, Guided wave dispersion curves for a bar with an arbitrary cross-section, a rod and rail example. Ultrasonics 41, 175–183 (2003)

    Article  Google Scholar 

  53. P.W. Loveday, Semi-analytical finite element analysis of elastic waveguides subjected to axial loads. Ultrasonics 49, 298–300 (2009)

    Article  Google Scholar 

  54. S.S. Sekoyan, A.E. Eremeev, Measurement of the third-order elasticity constants for steel by the ultrasonic method. Meas. Tech. 0543–1972, 888–893 (1966)

    Article  Google Scholar 

  55. E. Onate, Structural Analysis with the Finite Element Method. Linear Statics – Volume I (Springer, Dordrecht, 2009)

    Book  MATH  Google Scholar 

  56. A. Bernard, M. Deschamps, M.J.S. Lowe, Energy velocity and group velocity for guided waves propagating within an absorbing or non-absorbing plate in vacuum. Rev Progr Quant NDE 18, 183–190 (1999)

    Google Scholar 

  57. A. Bernard, M.J.S. Lowe, M. Deschamps, Guided waves energy velocity in absorbing and non-absorbing plates. J. Acoust. Soc. Am. 110, 186–196 (2001)

    Article  Google Scholar 

  58. M.V. Predoi, M. Castaings, B. Hosten, C. Bacon, Wave propagation along transversely periodic structures. J. Acoust. Soc. Am. 121, 1935–1944 (2007)

    Article  Google Scholar 

  59. B. Pavlakovic, M.J.S. Lowe, Disperse User Manual (Imperial College, London, 2003)

    Google Scholar 

  60. C. Cattani, Y.Y. Rushchitskii, Wavelet and Wave Analysis as Applied to Materials with Micro or Nanostructure (World Scientific Pub. Co., Hackensack, 2007)

    Book  MATH  Google Scholar 

  61. W.H. Prosser, Ultrasonic characterization of the nonlinear elastic properties of unidirectional graphite/epoxy composites. NASA Contr. Rep. 4100, 75–120 (1987)

    Google Scholar 

  62. D.E. Knuth, Axioms and Hulls (Springer, Berlin-New York, 1992)

    Book  MATH  Google Scholar 

  63. A. Bouhadjera, Simulation of in-situ concrete conditions using a novel ultrasonic technique. in Proceedings of 16th World Conf Non-Destructive Testing (2004)

    Google Scholar 

  64. C. Payan, V. Garnier, J. Moysan, Potential of nonlinear ultrasonic indicators for nondestructive testing of concrete. Adv. Civ. Eng. 2010, 1–8 (2009)

    Google Scholar 

  65. M.A. Biot, Nonlinear thermoelasticity, irreversible thermodynamics and elastic instability. Indiana U. Math. J. 23, 309–335 (1973)

    Article  MATH  Google Scholar 

  66. O.W. Dillon, A nonlinear thermoelasticity theory. J. Mech. Phys. Solids 10, 123–131 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  67. M. Slemrod, Global existence, uniqueness, and asymptotic stability of classical smooth solutions in one-dimensional non-linear thermoelasticity. Arch. Ration. Mech. Ann. 76, 97–133 (1981)

    Article  MATH  Google Scholar 

  68. A.D. Kerr, Thermal buckling of straight tracks: fundamentals, analyses and preventive measures. Tech Rep FRA/ORD-78-49 (1978)

    Google Scholar 

  69. A. Kish, Fundamentals of CWR rail stress management. in TRB 90th Annual Meeting (Washington, DC, 2011)

    Google Scholar 

  70. C. Nucera, R. Phillips, F. Lanza di Scalea, M. Fateh, G. Carr, RAIL-NT system for the in-situ measurement of neutral temperature in CWR: Results from laboratory and field test. J. Transp. Res. Board 2374, 154–161 (2013)

    Article  Google Scholar 

  71. H. Ledbetter, Thermal-expansion and elastic-constants. Int. J. Thermophys. 12, 637–642 (1991)

    Article  Google Scholar 

  72. D.M. Egle, D.E. Bray, Measurement of acoustoelastic and 3rd-order elastic-constants for rail steel. J. Acoust. Soc. Am. 60, 741–744 (1976)

    Article  Google Scholar 

  73. J.H. Cantrell, in Fundamentals and Applications of Nonlinear Ultrasonic Nondestructive Evaluation, ed. By T. Kundu. Ultrasonic Nondestructive Evaluation: Engineering and Biological Material Characterization (CRC Press, Boca Raton, 2004), pp. 363–433

    Google Scholar 

  74. J.H. Cantrell, Quantitative assessment of fatigue damage accumulation in wavy slip metals from acoustic harmonic generation. Philos. Mag. 86, 1539–1554 (2006)

    Article  Google Scholar 

  75. J.H. Cantrell, W.T. Yost, Nonlinear ultrasonic characterization of fatigue microstructures. Int. J. Fatigue 23, S487–S490 (2001)

    Article  Google Scholar 

  76. R.J.D. Tilley, Understanding Solids: The Science of Materials (Wiley, Chichester, West Sussex, England and Hoboken, 2004)

    Book  Google Scholar 

  77. G. Mie, Zur kinetischen theorie der einatomigen körper. Ann. Phys. 316, 657–697 (1903)

    Article  MATH  Google Scholar 

  78. C. Nucera, F. Lanza di Scalea, Nonlinear wave propagation in constrained solids subjected to thermal loads. J. Sound Vibr. 333, 541–554 (2014)

    Article  Google Scholar 

  79. J. Lennard-Jones, On the determination of molecular fields I – from the variation of the viscosity of a gas with temperature. Proc. R. Soc. Lond. 106, 441–462 (1924)

    Article  Google Scholar 

  80. J.E. Lennard-Jones, On the determination of molecular fields II – from the equation of state of a gas. Proc. R. Soc. Lond. 106, 463–477 (1924)

    Article  Google Scholar 

  81. J.E. Lennard-Jones, On the determination of molecular fields III – from crystal measurements and kinetic theory data. Proc. R. Soc. Lond. 106, 709–718 (1924)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Lanza di Scalea .

Editor information

Editors and Affiliations

A.1 Appendix

A.1 Appendix

The second-order and third-order coefficients of the interatomic potential for constrained thermal expansion, for the general case of the Mie potential, are given by the following expressions. These expressions are simply obtained by differentiating the potential VMIE in Eq. (9.145), and calculating the derivatives at the temperature-dependent interatomic position r*, where r* = rABD(T) for the fully constrained case, and r* = rABD-PC(T) for the partially constrained case.

$$ C(T){=}{\left.\frac{\partial^2{V}_{MIE}}{\partial {r}^2}\right|}_{r=r\cdot (T)}{=}\frac{n{\left(\frac{n}{m}\right)}^{\frac{n}{n-m}}\left[n\left(1+n\right){\left(\frac{q}{r\cdot (T)}\right)}^n-m\left(1+m\right){\left(\frac{q}{r\cdot (T)}\right)}^m\right]w}{\left(n-m\right){\left(r\cdot (T)\right)}^2} $$
(9.A1)

and

$$\begin{array}{lll} &&D(T)=\frac{\partial^3{V}_{MIE}}{\partial {r}^3} {\Bigg. \Bigg|}_{r=r\cdot (T)}\\ \nonumber &&{=}\frac{n{\left(\frac{n}{m}\right)}^{\frac{n}{n{-}m}}\left[m\left(1{+}m\right)\left(2{+}m\right){\left(\frac{q}{r\cdot (T)}\right)}^m{-}n\left(1{+}n\right)\left(2{+}n\right){\left(\frac{q}{r\cdot (T)}\right)}^n\right]w}{\left(n{-}m\right){\left(r\cdot (T)\right)}^3} \end{array}$$
(9.A2)

For the specific case of the Lennard-Jones potential (n = 12, m = 6), these expressions simplify to:

$$ {C}_{Lennard- Jones}(T)=\frac{24{wq}^6\left[26{q}^6-7{\left(r\cdot (T)\right)}^6\right]}{{\left(r\cdot (T)\right)}^{14}} $$
(9.A3)

and

$$ {D}_{Lennard- Jones}(T)=\frac{672{wq}^6\left[-13{q}^6+2{\left(r\cdot (T)\right)}^6\right]}{{\left(r\cdot (T)\right)}^{15}} $$
(9.A4)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lanza di Scalea, F., Srivastava, A., Nucera, C. (2019). Nonlinear Guided Waves and Thermal Stresses. In: Kundu, T. (eds) Nonlinear Ultrasonic and Vibro-Acoustical Techniques for Nondestructive Evaluation. Springer, Cham. https://doi.org/10.1007/978-3-319-94476-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94476-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94474-6

  • Online ISBN: 978-3-319-94476-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics