Skip to main content

Nonlocal and Coda Wave Quantification of Damage Precursors in Composite from Nonlinear Ultrasonic Response

  • Chapter
  • First Online:
  • 1673 Accesses

Abstract

Materials state awareness using conventional nondestructive evaluation (NDE) at the early stage of service life is extremely challenging because of the inherent material nonlinearity that initiates at the lower scales. Conventional NDE methods are limited by reporting location, size, and shape of the material discontinuities, e.g., cracks, voids, delamination, etc. In the past, several nonlinear ultrasonic methods are developed to detect the small discrete damages, whereas quantification of degraded material properties and detection of embryonic precursor damage in materials is currently challenging. Understanding the early stage of precursor damages using ultrasonic method inherently is to understand the material nonlinearity that arise from the bottom-up scales, which further requires to evaluate the ultrasonic signals with subtle nonlinearity in an innovative way that are essentially ignored in conventional ultrasonic NDE methods. Hence, in this chapter, it is hypothesized that such nonlinear effects at the early stage of damage at the lower scale are actually sensed by the ultrasonic NDE probes/sensors and hidden in the ultrasonic signals. Such hidden features are required to be extracted from the signals using innovative signal analysis method integrated with the microcontinuum physics. In this chapter defying the conventional nonlinear ultrasonic techniques, a newly formulated nonlocal approach is presented to quantify the damage precursor in materials at its early stage of the service life. Nonlocal parameter that carries information from the lower scale has a nonlinear dependency on the ultrasonic wave velocity at any particular frequency, which is assumed to be a constant in linear ultrasonics and no information could be extracted. Here, it should be noted that the nonlinear function of nonlocal parameter from a material that can be extracted from the material degradation state is not necessarily associated with the material discontinuities like cracks or delamination at the macroscale but due to distributed nonlocal effect of lower scale defects and damages. Thus, a new term called nonlocal damage entropy (NLDE) was coined by the authors in their recent publications to quantify the multiscale damage state in materials while exploiting the high-frequency ultrasonic (≥10 MHz) with microcontinuum field theory. In this chapter, first, a review of different “bottom-up” multiscale modeling approaches is discussed followed by the need of a “top-down” precursor quantification method is justified. Further, a review of the existing methods for quantifying damage precursor is presented followed by a mathematical and experimental derivation of NLDE is presented. To justify the findings with additional information from different scales, low-frequency (≤500 kHz) Guided wave ultrasonic NDE was performed. It is further hypothesized that the lower frequency ultrasonic guided wave signal that carries the nonlinear effect from the lower scale is essentially manifested but can only be extracted from the coda part of the signals and thus in this chapter the coda part of the signals were analyzed. Frequency transformation of the signals could result very low and almost undetectable higher harmonics due to the very early stage of damage and may not be useful for precursor quantification. Hence, a time domain analysis is required to find this information on the nonlinearity that could be manifested but are buried deep inside the signal. Thus, Guided coda wave interferometry (CWI) for composite is formulated for the first time using high-speed Taylor series expansion method. Precursor damage index is then formulated to quantify the damage state. Precursor damage index from Guided CWI and high-frequency NLDE are then correlated to evaluate the equivalency of information. To prove the positive indication of precursor damage from the newly coined NLDE, a set of benchmark studied are presented using optical microscopy and scanning electron microscopy (SEM). As metallic structures are well studied by many researchers, in this chapter the example study of precursor damage is restricted to the composite specimens under fatigue.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J.-B. Donnet, R.C. Bansal, Carbon Fibers (CRC Press, Boca Raton, 1998)

    Google Scholar 

  2. A. Miller, The Boeing 787 Dreamliner, in Keynote Address, 22nd American Society for Composites Technical Conference (2007)

    Google Scholar 

  3. W.G. Roeseler, et al., Composite structures: The first 100 years. in 16th International Conference on Composite Materials (2007)

    Google Scholar 

  4. J. Bell, Condition Based Maintenance Plus DoD Guidebook (DoD, Washington, DC, 2008)

    Google Scholar 

  5. A.K. Jardine, D. Lin, D. Banjevic, A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal Process. 20(7), 1483–1510 (2006)

    Article  Google Scholar 

  6. A. Hall, I.V. Brennan, A. Ghoshal, et al., in Report for the US Army Research Laboratory. Damage precursor investigation of fiber-reinforced composite materials under fatigue loads (US Army Research Laboratory, Aberdeen, 2013)

    Google Scholar 

  7. Reifsnider, K.L. and S.W. Case, Damage tolerance and durability of material systems. Damage Tolerance and Durability of Material Systems, by Kenneth L. Reifsnider, Scott W. Case, pp. 435. ISBN 0-471-15299-4. Wiley-VCH, Hoboken, 2002

    Google Scholar 

  8. S. Banerjee, X.P. Qing, S. Beard, F.K. Chang, Statistical damage estimation at hot spots using gaussian mixture model. IWSHM (2009)

    Google Scholar 

  9. S. Banerjee, Estimation of damage sate in materials using nonlocal perturbation: Application to active health monitoring. J. Intell. Mater. Syst. Struct. 20(10), 1221–1232 (2009)

    Article  Google Scholar 

  10. B. Piascik, J. Vickers, D. Lowry, S. Scotti, J. Stewart, A. Calomino, DRAFT Materials, Structures, Mechanical Systems, and Manufacturing Roadmap, Technology Area 12, ed. by N.A.a.S.A. (NASA) (2010)

    Google Scholar 

  11. D. Stargel, E. Tueget, Condition based maintenance plus structural integrity, in AFOSR Structural Health Monitoring Workshop (Covington, KY, 2008)

    Google Scholar 

  12. S.W. Tsai, E.M. Wu, A general theory of strength for anisotropic materials. J. Compos. Mater. 5(1), 58–80 (1971)

    Article  Google Scholar 

  13. H.T. Hahn, Nonlinear behavior of laminated composites. J. Compos. Mater. 7(2), 257–271 (1973)

    Article  Google Scholar 

  14. H.T. Hahn, S.W. Tsai, Nonlinear elastic behavior of unidirectional composite laminae. J. Compos. Mater. 7(1), 102–118 (1973)

    Article  Google Scholar 

  15. Z. Hashin, Failure criteria for unidirectional Fiber composites. J. Appl. Mech. 47(2), 329–334 (1980)

    Article  Google Scholar 

  16. J.D. Lee, Three dimensional finite element analysis of layered fiber-reinforced composite materials. Comput. Struct. 12(3), 319–339 (1980)

    Article  MATH  Google Scholar 

  17. K.N. Shivakumar, W. Elber, W. Illg, Prediction of low-velocity impact damage in thin circular laminates. AIAA J. 23(3), 442–449 (1985)

    Article  MATH  Google Scholar 

  18. F.-K. Chang, K.-Y. Chang, Post-failure analysis of bolted composite joints in tension or shear-out mode failure. J. Compos. Mater. 21(9), 809–833 (1987)

    Article  Google Scholar 

  19. F.-K. Chang, K.-Y. Chang, A progressive damage model for laminated composites containing stress concentrations. J. Compos. Mater. 21(9), 834–855 (1987)

    Article  Google Scholar 

  20. J. Engblom, J.J. Havelka, Transient response predictions for transversely loaded laminated composite plates. 30th Structures, Structural Dynamics and Materials Conference (American Institute of Aeronautics and Astronautics, Reston, 1989)

    Google Scholar 

  21. H.Y. Choi, H.-Y.T. Wu, F.-K. Chang, A new approach toward understanding damage mechanisms and mechanics of laminated composites due to low-velocity impact: Part II—Analysis. J. Compos. Mater. 25(8), 1012–1038 (1991)

    Article  Google Scholar 

  22. M.-H.R. Jen, Y.S. Kau, J.M. Hsu, Initiation and propagation of delamination in a centrally notched composite laminate. J. Compos. Mater. 27(3), 272–302 (1993)

    Article  Google Scholar 

  23. S. Liu, Z. Kutlu, F.-K. Chang, Matrix cracking-induced delamination propagation in graphite/epoxy laminated composites due to a transverse concentrated load. in Comp Materials: Fatigue and Fracture, Fourth Volume, ed. by W.W. Stinchcomb, N.E. Ashbaugh, vol. 1156 of ASTM STP: pp. 86–101 (American Society for Testing and Materials, Philadelphia, 1993)

    Google Scholar 

  24. G.A.O. Davies, X. Zhang, Impact damage prediction in carbon composite structures. Int. J. Impact Eng. 16(1), 149–170 (1995)

    Article  Google Scholar 

  25. R.M. Jones, Mechanics of Composite Materials (CRC Press, Boca Raton, 1999)

    Google Scholar 

  26. J.P. Hou, N. Petrinic, C. Ruiz, A delamination criterion for laminated composites under low-velocity impact. Compos. Sci. Technol. 61(14), 2069–2074 (2001)

    Article  Google Scholar 

  27. L. Iannucci, Progressive failure modelling of woven carbon composite under impact. Int. J. Impact Eng. 32(6), 1013–1043 (2006)

    Article  Google Scholar 

  28. Y. Mi, M.A. Crisfield, G.A.O. Davies, H.B. Hellweg, Progressive delamination using interface elements. J. Compos. Mater. 32(14), 1246–1272 (1998)

    Article  Google Scholar 

  29. M. Chen, A.J. Crisfield, E.P. Kinloch, F.L. Busso, Y. Matthews, J. Qiu, Predicting progressive delamination of composite material specimens via interface elements. Mech. Compos. Mater. Struct. 6(4), 301–317 (1999)

    Article  Google Scholar 

  30. R. Wisnom, R. Michael, F.-K. Chang, Modelling of splitting and delamination in notched cross-ply laminates. Compos. Sci. Technol. 60(15), 2849–2856 (2000)

    Article  Google Scholar 

  31. C. Soutis, P.T. Curtis, A method for predicting the fracture toughness of CFRP laminates failing by fibre microbuckling. Compos. A: Appl. Sci. Manuf. 31(7), 733–740 (2000)

    Article  Google Scholar 

  32. C. Soutis, F.C. Smith, F.L. Matthews, Predicting the compressive engineering performance of carbon fibre-reinforced plastics. Compos. A: Appl. Sci. Manuf. 31(6), 531–536 (2000)

    Article  Google Scholar 

  33. V.J. Hawyes, P.T. Curtis, C. Soutis, Effect of impact damage on the compressive response of composite laminates. Compos. A: Appl. Sci. Manuf. 32(9), 1263–1270 (2001)

    Article  Google Scholar 

  34. Y. Zhuk, I. Guz, C. Soutis, Compressive behaviour of thin-skin stiffened composite panels with a stress raiser. Compos. Part B 32, 696–709 (2001)

    Article  Google Scholar 

  35. P.P. Camanho, C.G. Davila, Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials. NASA/TM-2002-211737 (2002)

    Google Scholar 

  36. L.M. Kachanov, Time of the rupture process under creep conditions. Izv. Akad. Nauk. SSR Otd. Tech. Nauk 8, 26–31 (1958)

    Google Scholar 

  37. Y. Rabotnov, Creep rupture. Proceedings of the12th International Congress of Applied Mechanics (1968)

    Google Scholar 

  38. R. Vaziri, M. Olson, D. Anderson, Damage in composites: A plasticity approach. Comput. Struct. 44, 103–116 (1992)

    Article  MATH  Google Scholar 

  39. O. Allix, P. Ladevèze, Interlaminar interface modelling for the prediction of delamination. Compos. Struct. 22(4), 235–242 (1992)

    Article  Google Scholar 

  40. P. Ladeveze, E. LeDantec, Damage modelling of the elementary ply for laminated composites. Compos. Sci. Technol. 43(3), 257–267 (1992)

    Article  Google Scholar 

  41. A. Matzenmiller, J. Lubliner, R.L. Taylor, A constitutive model for anisotropic damage in fiber-composites. Mech. Mater. 20(2), 125–152 (1995)

    Article  Google Scholar 

  42. A.F. Johnson, Modelling fabric reinforced composites under impact loads. Compos. A: Appl. Sci. Manuf. 32(9), 1197–1206 (2001)

    Article  Google Scholar 

  43. A.F. Johnson, A.K. Pickett, P. Rozycki, Computational methods for predicting impact damage in composite structures. Compos. Sci. Technol. 61(15), 2183–2192 (2001)

    Article  Google Scholar 

  44. K.V. Williams, R. Vaziri, Application of a damage mechanics model for predicting the impact response of composite materials. Comput. Struct. 79(10), 997–1011 (2001)

    Article  Google Scholar 

  45. P.P. Camanho, C.G. Davila, Physically Based Failure Criteria for FRP Laminates in Plane Stress. NASA-TM (2003)

    Google Scholar 

  46. P. Ladevèze, G. Lubineau, On a damage mesomodel for laminates: Micromechanics basis and improvement. Mech. Mater. 35(8), 763–775 (2003)

    Article  Google Scholar 

  47. P. Ladevèze, G. Lubineau, in Science and Technology of the Fatigue Response of Fibre-Reinforced Plastics. Section a Computational Meso-Damage Model for Life Prediction for Laminates, ed. by B. Harris. Fatigue in composites (Woodhead Publishing/CRC Press, Sawston\Boca Raton, 2003)

    Google Scholar 

  48. K.V. Williams, R. Vaziri, A. Poursartip, A physically based continuum damage mechanics model for thin laminated composite structures. Int. J. Solids Struct. 40(9), 2267–2300 (2003)

    Article  MATH  Google Scholar 

  49. J. Lemaitre, R. Desmorat, Engineering Damage Mechanics, Ductile, Creep, Fatigue and Brittle Failures (Springer, The Netherlands, 2005)

    Google Scholar 

  50. S.T. Pinho, L. Iannucci, P. Robinson, Physically-based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking: Part I: Development. Compos. A: Appl. Sci. Manuf. 37(1), 63–73 (2006)

    Article  Google Scholar 

  51. S.T. Pinho, L. Iannucci, P. Robinson, Physically based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking. Part II: FE implementation. Compos. A: Appl. Sci. Manuf. 37(5), 766–777 (2006)

    Article  Google Scholar 

  52. M.V. Donadon, L. Iannucci, B.G. Falzon, J.M. Hodgkinson, S.F.M. de Almeida, A progressive failure model for composite laminates subjected to low velocity impact damage. Comput. Struct. 86(11–12), 1232–1252 (2008)

    Article  Google Scholar 

  53. M.V. Donadon, S.F.M. De Almeida, M.A. Arbelo, A.R. de Faria, A Three-dimensional ply failure model for composite structures. Int. J. Aerosp. Eng. 2009, 22 (2009)

    Article  Google Scholar 

  54. P. Ladevèze, G. Lubineau, On a damage mesomodel for laminates: Micro–meso relationships, possibilities and limits. Compos. Sci. Technol. 61(15), 2149–2158 (2001)

    Article  Google Scholar 

  55. P. Ladevèze, A. Nouy, On a multiscale computational strategy with time and space homogenization for structural mechanics. Comput. Methods Appl. Mech. Eng. 192(28–30), 3061–3087 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  56. D.H. Allen, Damage Evolution in Laminates. ed. By R. Talreja. Damage Mechanics of Composite Materials (Elsevier: Amsterdam, 1994), pp. 79–114

    Google Scholar 

  57. M.L. Phillips, C. Yoon, D.H. Allen, A computational model for predicting damage evolution in laminated composite plates. J. Eng. Mater. Technol. 21, 436–444 (1999)

    Article  Google Scholar 

  58. K.L. Reifsnider, W. Scott, Damage Tolerence and Durability in Material Systems (Wiley-Interscience, New York, 2002)

    Google Scholar 

  59. R.M. Haj-Ali, A.H. Muliana, A multiscale constitutive framework for the nonlinear analysis of laminated composite materials and structures. Int. J. Solids Struct. 41(3), 3461–3490 (2004)

    Article  MATH  Google Scholar 

  60. L.N. McCartney, G.A. Schoeppner, in Multiscale Modelling of Composite Material Systems: The Art of Predictive Damage Modelling, ed. by C. Soutis, P. W. R. Beaumont. Multiscale predictive modelling of cracking in laminated composites (Woodhead Publishing, Cambridge, 2005), pp. 65–98

    Chapter  Google Scholar 

  61. C. Soutis, P. W. R. Beaumont (eds.), Multiscale Modelling of Composite Material Systems: The Art of Predictive Damage Modelling (Woodhead Publishing, Cambridge, 2005)

    Google Scholar 

  62. P.C. Andia, F. Costanzo, G.L. Gray, A classical mechanics approach to the determination of the stress-strain response of particle systems. Model. Simul. Mater. Sci. Eng. 14, 741–757 (2006)

    Article  Google Scholar 

  63. R. Talreja, Damage analysis for structural integrity and durability of composite materials. Fatigue Fract. Eng. Mater. Struct. 29, 481–506 (2006)

    Article  Google Scholar 

  64. S. Ghosh, in Aduptive concurrent multi-level model for multiscale analysis of composite materials including damage, eds. By Y.W. Kwon, D.H. Allen, R. Talreja. Multiscale Modeing and Simulation of Composite Materials and Structures (Springer, New York, 2008)

    Google Scholar 

  65. Y. W. Kwon, D. H. Allen, R. Talreja (eds.), Multiscale Modeling and Simulation of Composite Materials and Structures (Springer, New York, 2008)

    MATH  Google Scholar 

  66. D.J. Bernard, G. Dace, O. Buck, Acoustic harmonic generation due to thermal Embrittlement of Inconel 718. J. Nondestruct. Eval. 16, 67–75 (1997)

    Google Scholar 

  67. J.L. Blackshire et al., in Nonlinear Laser Ultrasonic Measurements of Localized Fatigue Damage, eds. By D.O. Thompson, D.E. Chimenti. Review of Progress in QNDE (Quantitative Nondestructive Evaluation) (Springer, New York, 1998). pp. 1479–1488

    Google Scholar 

  68. G.E. Dieter, Mechanical Metallurgy (McGraw Hill, London, 1998)

    Google Scholar 

  69. P.B. Nagy, Fatigue damage assessment by nonlinear ultrasonic materials characterization. Ultrasonics 36(1–5), 375–381 (1998)

    Article  Google Scholar 

  70. B. Otto, in Fatigue Damage and its Nondestructive Evaluation: An Overview, eds. By D.O. Thompson, D.E. Chimenti. Review of Progress in Quantitative Nondestructive Evaluation (Springer, New York, 1998). p. 1

    Google Scholar 

  71. Q.Y. Wang et al., Fatigue Fract. Eng. Mater. Struct. 22, 673 (1999)

    Article  Google Scholar 

  72. Y. Zeng, R.G. Maev, I.Y. Solodov, Nonlinear acoustic applications for material characterization: A review. Can. J. Phys. 77, 927–967 (1999)

    Article  Google Scholar 

  73. J. Herrmann et al., Assessment of material damage in a Nickel-Base superalloy using nonlinear Rayleigh surface waves. J. Appl. Phys. 99(12), 124913–124920 (2006)

    Article  Google Scholar 

  74. S. Hirsekorn, U. Rabe, W. Arnold, Characterization and evaluation of composite laminates by nonlinear ultrasonic transmission measurements, in European Conference on Non-destructive Testing, France, 2006

    Google Scholar 

  75. M. Deng, J. Pei, Assessment of accumulated fatigue damage in solid plates using nonlinear lamb wave approach. Appl. Phys. Lett. 90, 121902 (2007)

    Article  Google Scholar 

  76. H.A. Bruck, S.R. McNeill, M.A. Sutton, W.H. Peters III, Digital image correlation using Newton-Raphson method of partial differential correction. Exp. Mech. 29(3), 261–267 (1989)

    Article  Google Scholar 

  77. T.C. Chu, W.F. Ranson, M.A. Sutton, Applications of digital-image-correlation techniques to experimental mechanics. Exp. Mech. 25(3), 232–244 (1985)

    Article  Google Scholar 

  78. N. McCormick, J. Lord, Digital image correlation. Mater. Today 13(12), 52–54 (2010)

    Article  Google Scholar 

  79. S.A. Adelman, J.D. Doll, Generalized Langevin equation approach for atom/solid-surface scattering: General formulation for classical scattering off harmonic solids. J. Chem. Phys. 64, 2375–2388 (1976)

    Article  Google Scholar 

  80. F.F. Abraham et al., Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture. Europhys. Lett. 44(6), 783–787 (1998)

    Article  Google Scholar 

  81. F.F. Abraham, H. Gao, How fast can cracks propagate? Phys. Rev. Lett. 84(14), 3113–3116 (2000)

    Article  Google Scholar 

  82. T. Belytsckko, S.P. Xiao, Coupling methods for continuum model with molecular model. Int. J. Multiscale Com. Eng. 1, 115–126 (2003)

    Google Scholar 

  83. R.B. Lechoucq, S.A. Silling, Peridynamic theory for solid mechanics. Adv. Appl. Mech. 44, 73–168 (2010)

    Article  Google Scholar 

  84. A.C. Egingen, D.G.B. Edelen, On nonlocal elasticity. Int. J. Eng. Sci. 10, 233–248 (1972)

    Article  MathSciNet  Google Scholar 

  85. A.C. Eringen, Developments of Mechanics, vol 3 (Wiley, New York, 1965)

    Google Scholar 

  86. A.C. Eringen, Mechanics of Continua (Wiley, Hoboken, 1967)

    MATH  Google Scholar 

  87. A.C. Eringen, Continuum mechanics at the atomic scale. Crystal Lattice Defects 7, 109–130 (1977)

    Google Scholar 

  88. A.C. Eringen, On differential equations of nonlocal elasticity and solution of skew dislocation and surface waves. J. Appl. Phys. 54(9), 4703–4710 (1983)

    Article  Google Scholar 

  89. A.C. Eringen, Nonlocal Continuum Field Theories (Springer, New York, 2002)

    MATH  Google Scholar 

  90. R.O. Mindlin, Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  91. R.A. Toupin, Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11, 385 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  92. E. Cosserat, F. Cosserat, Theories des Corps Deformables (Hermann, Paris, 1909)

    MATH  Google Scholar 

  93. S. Banerjee, R. Ahmed, Precursor/incubation of damage state quantification using hybrid microcontinuum approach and high frequency ultrasonic. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(6), 1141–1151 (2013)

    Article  Google Scholar 

  94. G.A.D. Briggs, O.V. Kolosov, Acoustic Microscopy, 2nd edn. (Oxford University Press, New York, 2010)

    Google Scholar 

  95. E. Drescher-Krasicka, J.R. Wilis, Mapping stress with ultrasound. Nature 384, 52–55 (1996)

    Article  Google Scholar 

  96. T. Kundu, Inversion of acoustic material signature of layered solids. J. Acoustic. Soc. Am. 91(2), 591–600 (1992)

    Article  Google Scholar 

  97. M. Nishida, T. Endo, T. Adachi, H. Matsumoto, Measurement of local elastic moduli by magnitude and phase acoustic microscope. NDT&E Int. 30(5), 271–277 (1997)

    Article  Google Scholar 

  98. P. Zinin, W. Weise, in Theory and Applications of Acoustic Microscopy, ed. By T. Kundu. Ultrasonic Nondestructive Evaluation, Engineering and Biological Material Characterization (CRC Press, Boca Raton, 2004)

    Google Scholar 

  99. S. Banerjee, R. Ahmed, Precursor/incubation of multi-scale damage state quantification in composite materials: Using hybrid microcontinuum field theory and high-frequency ultrasonics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(6), 1141–1151 (2013)

    Article  Google Scholar 

  100. S. Yadav, S. Banerjee, T. Kundu, On sequencing the feature extraction techniques for online damage characterization. J. Intell. Mater. Syst. Struct. 24, 473–483 (2013)

    Article  Google Scholar 

  101. A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54(9), 4703–4710 (1983)

    Article  Google Scholar 

  102. A. Shelke et al., Multi-scale damage state estimation in composites using nonlocal elastic kernel: An experimental validation. Int. J. Solids Struct. 48(7–8), 1219–1228 (2011)

    Article  MATH  Google Scholar 

  103. S.A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48(1), 175–209 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  104. Z.P. Bazant, M. Jirásek, Nonlocal integral formulations of plasticity and damage: Survey of progress. J. Eng. Mech. 128(11), 1119–1149 (2002)

    Article  Google Scholar 

  105. F. Bobaru, S.A. Silling, Peridynamic 3D models of nanofiber networks and carbon nanotube-reinforced composites. in Materials Processing and Design: Modeling, Simulation and Applications-NUMIFORM 2004-Proceedings of the 8th International Conference on Numerical Methods in Industrial Forming Processes (AIP Publishing, Melville, 2004)

    Google Scholar 

  106. B. Kilic, A. Agwai, E. Madenci, Peridynamic theory for progressive damage prediction in center-cracked composite laminates. Compos. Struct. 90(2), 141–151 (2009)

    Article  Google Scholar 

  107. B. Kilic, E. Madenci, Structural stability and failure analysis using peridynamic theory. Int. J. Nonlin. Mech. 44(8), 845–854 (2009)

    Article  MATH  Google Scholar 

  108. M. Lazar, G.A. Maugin, E.C. Aifantis, On a theory of nonlocal elasticity of bi-Helmholtz type and some applications. Int. J. Solids Struct. 43(6), 1404–1421 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  109. L. Brillouin, Wave Propagation in Periodic Structures (Dover Publications, USA, 1953)

    MATH  Google Scholar 

  110. A. Chakraborty, Wave propagation in anisotropic media with non-local elasticity. Int. J. Solids Struct. 44(17), 5723–5741 (2007)

    Article  MATH  Google Scholar 

  111. R.C. Picu, On the functional form of non-local elasticity kernels. J. Mech. Phys. Solids 50(9), 1923–1939 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  112. W. Weise, P. Zinin, A. Briggs, T. Wilson, S. Boseck, Examination of the two dimensional pupil function in coherent scanning microscopes using spherical particles. J. Acoustic. Soc. Am. 104, 181–191 (1998)

    Article  Google Scholar 

  113. T. Kundu, J. Bereiter-Hahn, I. Karl, Cell property determination from the acoustic microscope generated voltage versus frequency curves. Biophys. J. 78, 2270–2279 (2000)

    Article  Google Scholar 

  114. M. Gresil, V. Giurgiutiu, Prediction of attenuated guided waves propagation in carbon fiber composites using Rayleigh damping model. J. Intell. Mater. Syst. Struct. 26(16), 2151–2169 (2015)

    Article  Google Scholar 

  115. B. Hosten, M. Castaings, T. Kundu, in Identification of Viscoelastic Moduli of Composite Materials from the Plate Transmission Coefficients Review of Progress, eds. By D.E. Chimenti, D.E. Thompson. Quantitative Nondestructive Evaluation, Vol. 17. (Plenum Press, New York, 1998)

    Google Scholar 

  116. P. Marguères, F. Meraghni, Damage induced anisotropy and stiffness reduction evaluation in composite materials using ultrasonic wave transmission. Compos. A: Appl. Sci. Manuf. 45(0), 134–144 (2013)

    Article  Google Scholar 

  117. R. Snieder, H. Douma, in Coda Wave Interferometry. 2004 McGraw-Hill Yearbook of Science and Technology, Vol. 54 (McGraw-Hill, New York, 2004)

    Google Scholar 

  118. R. Snieder, The theory of coda wave interferometry. Pure Appl. Geophys. 163(2-3), 455–473 (2006)

    Article  Google Scholar 

  119. E. Larose, S. Hall, Monitoring stress related velocity variation in concrete with a 2× 10− 5 relative resolution using diffuse ultrasound. J. Acoust. Soc. Am. 125(4), 1853–1856 (2009)

    Article  Google Scholar 

  120. D.P. Schurr et al., Damage detection in concrete using coda wave interferometry. NDT&E Int. 44(8), 728–735 (2011)

    Article  Google Scholar 

  121. T. Planès, E. Larose, A review of ultrasonic coda wave interferometry in concrete. Cem. Concr. Res. 53, 248–255 (2013)

    Article  Google Scholar 

  122. R. Snieder et al., Coda wave interferometry for estimating nonlinear behavior in seismic velocity. Science 295(5563), 2253–2255 (2002)

    Article  Google Scholar 

  123. M. Fehler, P. Roberts, T. Fairbanks, A temporal change in coda wave attenuation observed during an eruption of Mount St. Helens. J. Geophys. Res. Solid Earth 93(B5), 4367–4373 (1988)

    Article  Google Scholar 

  124. A. Grêt, R. Snieder, U. Özbay, Monitoring in situ stress changes in a mining environment with coda wave interferometry. Geophys. J. Int. 167(2), 504–508 (2006)

    Article  Google Scholar 

  125. D. Pandolfi, C. Bean, G. Saccorotti, Coda wave interferometric detection of seismic velocity changes associated with the 1999 M= 3.6 event at Mt. Vesuvius. Geophys. Res. Lett. 33(6), L06306 (2006)

    Article  Google Scholar 

  126. C. Sens-Schönfelder, U. Wegler, Passive image interferometry and seasonal variations of seismic velocities at Merapi volcano, Indonesia. Geophys. Res. Lett. 33(21), L21302 (2006)

    Article  Google Scholar 

  127. M.M. Haney et al., Observation and modeling of source effects in coda wave interferometry at Pavlof volcano. Lead. Edge 28(5), 554–560 (2009)

    Article  Google Scholar 

  128. F. Martini et al., Seasonal cycles of seismic velocity variations detected using coda wave interferometry at Fogo volcano, São Miguel, Azores, during 2003–2004. J. Volcanol. Geotherm. Res. 181(3), 231–246 (2009)

    Article  Google Scholar 

  129. O. Abraham, et al., Monitoring of a large cracked concrete sample with non-linear mixing of ultrasonic coda waves. in EWSHM-7th European Workshop on Structural Health Monitoring (2014)

    Google Scholar 

  130. E. Niederleithinger, et al., Coda Wave Interferometry used to localize compressional load effects in a concrete specimen. in EWSHM-7th European Workshop on Structural Health Monitoring (2014)

    Google Scholar 

  131. Y. Zhang et al., Study of stress-induced velocity variation in concrete under direct tensile force and monitoring of the damage level by using thermally-compensated coda wave interferometry. Ultrasonics 52(8), 1038–1045 (2012)

    Article  Google Scholar 

  132. G. Poupinet, W. Ellsworth, J. Frechet, Monitoring velocity variations in the crust using earthquake doublets: An application to the Calaveras Fault, California. J. Geophys. Res. Solid Earth 89(B7), 5719–5731 (1984)

    Article  Google Scholar 

  133. C. Payan et al., Determination of third order elastic constants in a complex solid applying coda wave interferometry. Appl. Phys. Lett. 94(1), 011904 (2009)

    Article  MathSciNet  Google Scholar 

  134. Y. Zhang et al., Diffuse ultrasound monitoring of stress and damage development on a 15-ton concrete beam. J. Acoust. Soc. Am. 139(4), 1691–1701 (2016)

    Article  Google Scholar 

  135. S. Liu et al., A novel coda wave interferometry calculation approach using Taylor series expansion, in International Workshop on Structural Health Monitoring (Stanford, Palo Alto, CA~2015)

    Google Scholar 

  136. S. Patra, S. Banerjee, Material State Awareness for Composite Part II: Precursor Damage Analysis and Quantification of Degraded Material Properties Using Quantitative Ultrasonic Image Correlation (QUIC), Material, Vol. 10(12), pp. 1444 (2017)

    Google Scholar 

  137. S. Patra, S. Banerjee, Material State Awareness for Composite Part I: Precursor Damage Analysis Using Ultrasonic Guided Coda Wave Interferometry (CWI), Material, Vol. 10(12), pp. 1436 (2017)

    Google Scholar 

  138. D. Astm, 3039/D 3039M. Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials (2000)

    Google Scholar 

Download references

Acknowledgments

The research was partially funded by NASA, Contract No. NNL15AA16C and ASPIRE-I grant supported by Office of Vice President of Research at the University of South Carolina, grant no. 15540-E422. Author thanks the PVATepla, Germany for providing valuable inputs and know how on the SAM scanning procedures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sourav Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Banerjee, S., Patra, S. (2019). Nonlocal and Coda Wave Quantification of Damage Precursors in Composite from Nonlinear Ultrasonic Response. In: Kundu, T. (eds) Nonlinear Ultrasonic and Vibro-Acoustical Techniques for Nondestructive Evaluation. Springer, Cham. https://doi.org/10.1007/978-3-319-94476-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94476-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94474-6

  • Online ISBN: 978-3-319-94476-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics