Skip to main content

A Unified Treatment of Nonlinear Viscoelasticity and Non-equilibrium Dynamics

  • Chapter
  • First Online:
Nonlinear Ultrasonic and Vibro-Acoustical Techniques for Nondestructive Evaluation
  • 1667 Accesses

Abstract

This chapter introduces bases of nonlinear mesoscopic elasticity and presents a novel approach to model and numerically simulate the dynamical behavior of this class of material. Under dynamical solicitation, these so-called nonclassical materials exhibit two different time-dependent nonlinear mechanisms termed “fast” (nonlinear elasticity) and “slow” (loss of elastic properties and relaxation). A unified model of one-dimensional continuum is presented, which combines all of these phenomena as well as viscoelastic attenuation often neglected. The final set of partial differential equations is a system of conservation laws with relaxation described by a reduced number of parameters to account for all the effects. A numerical scheme based on finite-volume methods is presented which reproduces well the key experimental observations made in Dynamic Acousto Elasticity (DAE) and Nonlinear Resonant Ultrasound Spectroscopy (NRUS) type of experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.A. Guyer, P.A. Johnson, Nonlinear mesoscopic elasticity: evidence for a new class of materials. Phys. Today 52(4), 30–36 (1999)

    Article  Google Scholar 

  2. R.A. Guyer, P.A. Johnson, Nonlinear Mescopic Elasticity: The Complex Behaviour of Rocks, Soil, Concrete (Wiley-VCH, Weinheim, 2009)

    Book  Google Scholar 

  3. L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics Vol. 7: Theory of Elasticity (Pergamon Press, London, 1959)

    Google Scholar 

  4. K. Winkler, N. Amos, M. Gladwin, Friction and seismic attenuation in rocks. Nature 277, 528–531 (1979)

    Article  Google Scholar 

  5. J.A. TenCate, E. Smith, R.A. Guyer, Universal slow dynamics in granular solids. Phys. Rev. Lett. 85(5), 1020 (2000)

    Article  Google Scholar 

  6. J.A. TenCate, D. Pasqualini, H. Salman, K. Heitmann, D. Higdon, P.A. Johnson, Nonlinear and nonequilibrium dynamics in geomaterials. Phys. Rev. Lett. 93(6), 065501 (2004)

    Google Scholar 

  7. J. Gomberg, P.A. Johnson, Seismology: dynamic triggering of earthquakes. Nature 437, 830 (2005)

    Article  Google Scholar 

  8. P.A. Johnson, X. Jia, Nonlinear dynamics, granular media and dynamic earthquake triggering. Nature 437, 871–874 (2005)

    Article  Google Scholar 

  9. P.A. Johnson, H. Savage, M. Knuth, J. Gomberg, C. Marone, Effect of acoustic waves on stick–slip in granular media and implications for earthquakes. Nature 451, 57–60 (2008)

    Article  Google Scholar 

  10. P.A. Johnson, P. Bodin, J. Gomberg, F. Pearce, Z. Lawrence, F.-Y. Menq, Inducing in situ, nonlinear soil response applying an active source. J. Geophys. Res. Solid Earth 114(B5), B05304 (2009)

    Google Scholar 

  11. G. Renaud, J. Rivière, C. Larmat, J.T. Rutledge, R.C. Lee, R.A. Guyer, K. Stokoe, P.A. Johnson, In situ characterization of shallow elastic nonlinear parameters with dynamic acoustoelastic testing. J. Geophys. Res. Solid Earth 119(9), 6907–6923 (2014)

    Article  Google Scholar 

  12. P. Guéguen, P. Johnson, P. Roux, Nonlinear dynamics induced in a structure by seismic and environmental loading. J. Acoust. Soc. Am. 140(1), 582–590 (2016)

    Article  Google Scholar 

  13. C. Payan, T.J. Ulrich, P.Y. Le Bas, T. Saleh, M. Guimaraes, Quantitative linear and nonlinear resonance inspection techniques and analysis for material characterization: application to concrete thermal damage. J. Acoust. Soc. Am. 136(2), 537–546 (2014)

    Article  Google Scholar 

  14. C. Payan, T.J. Ulrich, P.Y. Le Bas, M. Griffa, P. Schuetz, M.C. Remillieux, T.A. Saleh, Probing material nonlinearity at various depths by time reversal mirrors. Appl. Phys. Lett. 104(14), 144102 (2014)

    Article  Google Scholar 

  15. V. Zaitsev, V. Gusev, B. Castagnede, Thermoelastic mechanism for logarithmic slow dynamics and memory in elastic wave interactions with individual cracks. Phys. Rev. Lett. 90(7), 075501 (2003)

    Google Scholar 

  16. V.Y. Zaitsev, V.E. Gusev, V. Tournat, P. Richard, Slow relaxation and aging phenomena at the nanoscale in granular materials. Phys. Rev. Lett. 112(10), 108302 (2014)

    Google Scholar 

  17. V. Aleshin, K. Van Den Abeele, Friction in unconforming grain contacts as a mechanism for tensorial stress–strain hysteresis. J. Mech. Phys. Solids 55(4), 765–787 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. P. Antonaci, C.L.E. Bruno, A.S. Gliozzi, M. Scalerandi, Evolution of damage-induced nonlinearity in proximity of discontinuities in concrete. Int. J. Solids Struct. 47(11–12), 1603–1610 (2010)

    Article  MATH  Google Scholar 

  19. R.A. Guyer, K.R. McCall, G.N. Boitnott, Hysteresis, discrete memory, and nonlinear wave propagation in rock: a new paradigm. Phys. Rev. Lett. 74(17), 3491–3494 (1995)

    Article  Google Scholar 

  20. A.V. Lebedev, L.A. Ostrovsky, A unified model of hysteresis and long-time relaxation in heterogeneous materials. Acoust. Phys. 60(5), 555–561 (2014)

    Article  Google Scholar 

  21. C. Pecorari, A constitutive relationship for mechanical hysteresis of sandstone materials. Proc. R. Soc. A 471(2184), 20150369 (2015)

    Article  Google Scholar 

  22. O.O. Vakhnenko, V.O. Vakhnenko, T.J. Shankland, J.A. Ten Cate, Strain-induced kinetics of intergrain defects as the mechanism of slow dynamics in the nonlinear resonant response of humid sandstone bars. Phys. Rev. E 70(1), 015602 (2004)

    Google Scholar 

  23. V.O. Vakhnenko, O.O. Vakhnenko, J.A. TenCate, T.J. Shankland, Modeling of stress-strain dependences for Berea sandstone under quasistatic loading. Phys. Rev. B 76(18), 184108 (2007)

    Google Scholar 

  24. N. Favrie, B. Lombard, C. Payan, Fast and slow dynamics in a nonlinear elastic bar excited by longitudinal vibrations. Wave Motion 56, 221–238 (2015)

    Article  MathSciNet  Google Scholar 

  25. H. Berjamin, N. Favrie, B. Lombard, G. Chiavassa, Nonlinear waves in solids with slow dynamics: an internal-variable model. Proc. R. Soc. A 473(2201), 20170024 (2017)

    Article  MathSciNet  Google Scholar 

  26. G. Renaud, J. Rivière, P.Y. Le Bas, P.A. Johnson, Hysteretic nonlinear elasticity of Berea sandstone at low-vibrational strain revealed by dynamic acousto-elastic testing. Geophys. Res. Lett. 40(4), 715–719 (2013)

    Article  Google Scholar 

  27. M. Lott, C. Payan, V. Garnier, Q.A. Vu, J. Eiras, M.C. Remillieux, P.Y. Le Bas, T.J. Ulrich, Three-dimensional treatment of nonequilibrium dynamics and higher order elasticity. Appl. Phys. Lett. 108(14), 141907 (2016)

    Article  Google Scholar 

  28. M.C. Remillieux, R.A. Guyer, C. Payan, T.J. Ulrich, Decoupling nonclassical nonlinear behavior of elastic wave types. Phys. Rev. Lett. 116(11), 115501 (2016)

    Google Scholar 

  29. J. Smoller, Shock Waves and Reaction–Diffusion Equations, 2nd edn. (Springer, New York, 1994)

    Book  MATH  Google Scholar 

  30. E. Godlewski, P.-A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws (Springer, New York, 1996)

    Book  MATH  Google Scholar 

  31. R.J. LeVeque, Finite-Volume Methods for Hyperbolic Problems (Cambridge University Press, Cambridge, 2002)

    Book  MATH  Google Scholar 

  32. A.N. Norris, Finite-amplitude waves in solids, in Nonlinear Acoustics, ed. by M.F. Hamilton, D.T. Blackstock (Academic Press, San Diego, 1998), pp. 263–277

    Google Scholar 

  33. G.A. Maugin, W. Muschik, Thermodynamics with internal variables. Part I. General concepts. J. Non-Equilib. Thermodyn. 19(3), 217–249 (1994)

    MATH  Google Scholar 

  34. G.A. Maugin, The saga of internal variables of state in continuum thermo-mechanics (1893–2013). Mech. Res. Commun. 69, 79–86 (2015)

    Article  Google Scholar 

  35. J.M. Carcione, Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Porous Media (Elsevier, Oxford, 2001)

    Google Scholar 

  36. P. Moczo, J. Kristek, On the rheological models used for time-domain methods of seismic wave propagation. Geophys. Res. Lett. 32(1), L01306 (2005)

    Google Scholar 

  37. E. Blanc, D. Komatitsch, E. Chaljub, B. Lombard, Z. Xie, Highly accurate stability-preserving optimization of the Zener viscoelastic model, with application to wave propagation in the presence of strong attenuation. Geophys. J. Int. 205(1), 427–439 (2016)

    Article  Google Scholar 

  38. C.-W. Shu, High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51(1), 82–126 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. R. Velasco-Segura, P.L. Rendón, A finite volume approach for the simulation of nonlinear dissipative acoustic wave propagation. Wave Motion 58, 180–195 (2015)

    Article  MathSciNet  Google Scholar 

  40. A. Voss, Exact Riemann solution for the Euler equations with nonconvex and nonsmooth equation of state, Ph.D. thesis, RWTH Aachen, 2005

    Google Scholar 

  41. A. Kurganov, G. Petrova, B. Popov, Adaptive semidiscrete central-upwind schemes for nonconvex hyperbolic conservation laws. SIAM J. Sci. Comput. 29(6), 2381–2401 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. H. Berjamin, B. Lombard, C. Chiavassa, N. Favrie, Modeling longitudinal wave propagation in nonlinear viscoelastic solids with softening. Int. J. Solids Struct. 141142, 35–44 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the interdisciplinary mission of CNRS (INFINITI). The project leading to this publication has received funding from Excellence Initiative of Aix-Marseille University—A*MIDEX, a French “Investissements d’Avenir” programme. It has been carried out in the framework of the Labex MEC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Payan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berjamin, H., Chiavassa, G., Favrie, N., Lombard, B., Payan, C. (2019). A Unified Treatment of Nonlinear Viscoelasticity and Non-equilibrium Dynamics. In: Kundu, T. (eds) Nonlinear Ultrasonic and Vibro-Acoustical Techniques for Nondestructive Evaluation. Springer, Cham. https://doi.org/10.1007/978-3-319-94476-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94476-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94474-6

  • Online ISBN: 978-3-319-94476-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics