A. Babenko, A. Slesarev, A. Chigorin, and V. Lempitsky. Neural codes for image retrieval. arXiv:1404.1777, 2014.https://arxiv.org/abs/1404.1777
M. Baccouche, F. Mamalet, C. Wolf, C. Garcia, and A. Baskurt. Sequential deep learning for human action recognition. International Workshop on Human Behavior Understanding, pp. 29–39, 2011.
Google Scholar
N. Ballas, L. Yao, C. Pal, and A. Courville. Delving deeper into convolutional networks for learning video representations. arXiv:1511.06432, 2015.https://arxiv.org/abs/1511.06432
T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. IEEE TPAMI, 33(3), pp. 500–513, 2011.
CrossRef
Google Scholar
A. Coates and A. Ng. Learning feature representations with k-means. Neural networks: Tricks of the Trade, Springer, pp. 561–580, 2012.
Google Scholar
R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa. Natural language processing (almost) from scratch. Journal of Machine Learning Research, 12, pp. 2493–2537, 2011.
MATH
Google Scholar
R. Collobert and J. Weston. A unified architecture for natural language processing: Deep neural networks with multitask learning. ICML Conference, pp. 160–167, 2008.
Google Scholar
D. Cox and N. Pinto. Beyond simple features: A large-scale feature search approach to unconstrained face recognition. IEEE International Conference on Automatic Face and Gesture Recognition and Workshops, pp. 8–15, 2011.
Google Scholar
N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. Computer Vision and Pattern Recognition, pp. 886–893, 2005.
Google Scholar
M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural networks on graphs with fast localized spectral filtering. NIPS Conference, pp. 3844–3852, 2016.
Google Scholar
J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, K. Saenko, and T. Darrell. Long-term recurrent convolutional networks for visual recognition and description. IEEE conference on computer vision and pattern recognition, pp. 2625–2634, 2015.
Google Scholar
C. Dos Santos and M. Gatti. Deep Convolutional Neural Networks for Sentiment Analysis of Short Texts. COLING, pp. 69–78, 2014.
Google Scholar
A. Dosovitskiy and T. Brox. Inverting visual representations with convolutional networks. CVPR Conference, pp. 4829–4837, 2016.
Google Scholar
V. Dumoulin and F. Visin. A guide to convolution arithmetic for deep learning. arXiv:1603.07285, 2016.https://arxiv.org/abs/1603.07285
P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part-based models. IEEE TPAMI, 32(9), pp. 1627–1645, 2010.
CrossRef
Google Scholar
K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4), pp. 193–202, 1980.
CrossRef
Google Scholar
H. Gao, H. Yuan, Z. Wang, and S. Ji. Pixel Deconvolutional Networks. arXiv:1705.06820, 2017.https://arxiv.org/abs/1705.06820
L. Gatys, A. S. Ecker, and M. Bethge. Texture synthesis using convolutional neural networks. NIPS Conference, pp. 262–270, 2015.
Google Scholar
L. Gatys, A. Ecker, and M. Bethge. Image style transfer using convolutional neural networks. IEEE Conference on Computer Vision and Pattern Recognition, pp. 2414–2423, 2015.
Google Scholar
K. Greff, R. K. Srivastava, and J. Schmidhuber. Highway and residual networks learn unrolled iterative estimation. arXiv:1612.07771, 2016.https://arxiv.org/abs/1612.07771
R. Girshick, F. Iandola, T. Darrell, and J. Malik. Deformable part models are convolutional neural networks. IEEE Conference on Computer Vision and Pattern Recognition, pp. 437–446, 2015.
Google Scholar
B. Hariharan, P. Arbelaez, R. Girshick, and J. Malik. Simultaneous detection and segmentation. arXiv:1407.1808, 2014.https://arxiv.org/abs/1407.1808
D. Hassabis, D. Kumaran, C. Summerfield, and M. Botvinick. Neuroscience-inspired artificial intelligence. Neuron, 95(2), pp. 245–258, 2017.
CrossRef
Google Scholar
M. Havaei et al. Brain tumor segmentation with deep neural networks. Medical Image Analysis, 35, pp. 18–31, 2017.
CrossRef
Google Scholar
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778, 2016.
Google Scholar
K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual networks. European Conference on Computer Vision, pp. 630–645, 2016.
Google Scholar
M. Henaff, J. Bruna, and Y. LeCun. Deep convolutional networks on graph-structured data. arXiv:1506.05163, 2015.https://arxiv.org/abs/1506.05163
G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Weinberger. Deep networks with stochastic depth. European Conference on Computer Vision, pp. 646–661, 2016.
Google Scholar
G. Huang, Z. Liu, K. Weinberger, and L. van der Maaten. Densely connected convolutional networks. arXiv:1608.06993, 2016.https://arxiv.org/abs/1608.06993
D. Hubel and T. Wiesel. Receptive fields of single neurones in the cat’s striate cortex. The Journal of Physiology, 124(3), pp. 574–591, 1959.
CrossRef
Google Scholar
K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the best multi-stage architecture for object recognition? International Conference on Computer Vision (ICCV), 2009.
Google Scholar
S. Ji, W. Xu, M. Yang, and K. Yu. 3D convolutional neural networks for human action recognition. IEEE TPAMI, 35(1), pp. 221–231, 2013.
CrossRef
Google Scholar
Y. Jia et al. Caffe: Convolutional architecture for fast feature embedding. ACM International Conference on Multimedia, 2014.
Google Scholar
J. Johnson, A. Karpathy, and L. Fei-Fei. Densecap: Fully convolutional localization networks for dense captioning. IEEE Conference on Computer Vision and Pattern Recognition, pp. 4565–4574, 2015.
Google Scholar
J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for real-time style transfer and super-resolution. European Conference on Computer Vision, pp. 694–711, 2015.
Google Scholar
R. Johnson and T. Zhang. Effective use of word order for text categorization with convolutional neural networks. arXiv:1412.1058, 2014.https://arxiv.org/abs/1412.1058
A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. Large-scale video classification with convolutional neural networks. IEEE Conference on Computer Vision and Pattern Recognition, pp. 725–1732, 2014.
Google Scholar
A. Karpathy, J. Johnson, and L. Fei-Fei. Stanford University Class CS321n: Convolutional neural networks for visual recognition, 2016.http://cs231n.github.io/
Y. Kim. Convolutional neural networks for sentence classification. arXiv:1408.5882, 2014.
Google Scholar
T. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. arXiv:1609.02907, 2016.https://arxiv.org/pdf/1609.02907.pdf
A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. NIPS Conference, pp. 1097–1105. 2012.
Google Scholar
S. Lai, L. Xu, K. Liu, and J. Zhao. Recurrent Convolutional Neural Networks for Text Classification. AAAI, pp. 2267–2273, 2015.
Google Scholar
G. Larsson, M. Maire, and G. Shakhnarovich. Fractalnet: Ultra-deep neural networks without residuals. arXiv:1605.07648, 2016.https://arxiv.org/abs/1605.07648
S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back. Face recognition: A convolutional neural-network approach. IEEE Transactions on Neural Networks, 8(1), pp. 98–113, 1997.
CrossRef
Google Scholar
Q. Le et al. Building high-level features using large scale unsupervised learning. ICASSP, 2013.
Google Scholar
Y. LeCun and Y. Bengio. Convolutional networks for images, speech, and time series. The Handbook of Brain Theory and Neural Networks, 3361(10), 1995.
Google Scholar
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), pp. 2278–2324, 1998.
CrossRef
Google Scholar
Y. LeCun, C. Cortes, and C. Burges. The MNIST database of handwritten digits, 1998.http://yann.lecun.com/exdb/mnist/
Y. LeCun, K. Kavukcuoglu, and C. Farabet. Convolutional networks and applications in vision. IEEE International Symposium on Circuits and Systems, pp. 253–256, 2010.
Google Scholar
H. Lee, R. Grosse, B. Ranganath, and A. Y. Ng. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. ICML Conference, pp. 609–616, 2009.
Google Scholar
M. Lin, Q. Chen, and S. Yan. Network in network. arXiv:1312.4400, 2013.https://arxiv.org/abs/1312.4400
A. Mahendran and A. Vedaldi. Understanding deep image representations by inverting them. IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196, 2015.
Google Scholar
A. Makhzani and B. Frey. Winner-take-all autoencoders. NIPS Conference, pp. 2791–2799, 2015.
Google Scholar
J. Masci, U. Meier, D. Ciresan, and J. Schmidhuber. Stacked convolutional auto-encoders for hierarchical feature extraction. Artificial Neural Networks and Machine Learning, pp. 52–59, 2011.
Google Scholar
T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations in vector space. arXiv:1301.3781, 2013.https://arxiv.org/abs/1301.3781
J. Y.-H. Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, and G. Toderici. Beyond short snippets: Deep networks for video classification. IEEE Conference on Computer Vision and Pattern Recognition, pp. 4694–4702, 2015.
Google Scholar
A. Nguyen, A. Dosovitskiy, J. Yosinski, T., Brox, and J. Clune. Synthesizing the preferred inputs for neurons in neural networks via deep generator networks. NIPS Conference, pp. 3387–3395, 2016.
Google Scholar
M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and transferring mid-level image representations using convolutional neural networks. IEEE Conference on Computer Vision and Pattern Recognition, pp. 1717–1724, 2014.
Google Scholar
O. Parkhi, A. Vedaldi, and A. Zisserman. Deep Face Recognition. BMVC, 1(3), pp. 6, 2015.
Google Scholar
J. Pennington, R. Socher, and C. Manning. Glove: Global Vectors for Word Representation. EMNLP, pp. 1532–1543, 2014.
Google Scholar
A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv:1511.06434, 2015.https://arxiv.org/abs/1511.06434
M.’ A. Ranzato, F. J. Huang, Y-L. Boureau, and Y. LeCun. Unsupervised learning of invariant feature hierarchies with applications to object recognition. Computer Vision and Pattern Recognition, pp. 1–8, 2007.
Google Scholar
A. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson. CNN features off-the-shelf: an astounding baseline for recognition. IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 806–813, 2014.
Google Scholar
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time object detection. IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788, 2016.
Google Scholar
H. A. Rowley, S. Baluja, and T. Kanade. Neural network-based face detection. IEEE TPAMI, 20(1), pp. 23–38, 1998.
CrossRef
Google Scholar
A. Saxe, P. Koh, Z. Chen, M. Bhand, B. Suresh, and A. Ng. On random weights and unsupervised feature learning. ICML Confererence, pp. 1089–1096, 2011.
Google Scholar
P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv:1312.6229, 2013.https://arxiv.org/abs/1312.6229
E. Shelhamer, J., Long, and T. Darrell. Fully convolutional networks for semantic segmentation. IEEE TPAMI, 39(4), pp. 640–651, 2017.
Google Scholar
P. Simard, D. Steinkraus, and J. C. Platt. Best practices for convolutional neural networks applied to visual document analysis. ICDAR, pp. 958–962, 2003.
Google Scholar
K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556, 2014.https://arxiv.org/abs/1409.1556
K. Simonyan and A. Zisserman. Two-stream convolutional networks for action recognition in videos. NIPS Conference, pp. 568–584, 2014.
Google Scholar
K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv:1312.6034, 2013.
Google Scholar
J. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller. Striving for simplicity: The all convolutional net. arXiv:1412.6806, 2014.https://arxiv.org/abs/1412.6806
Y. Sun, D. Liang, X. Wang, and X. Tang. Deepid3: Face recognition with very deep neural networks. arXiv:1502.00873, 2013. https://arxiv.org/abs/1502.00873
Y. Sun, X. Wang, and X. Tang. Deep learning face representation from predicting 10,000 classes. IEEE Conference on Computer Vision and Pattern Recognition, pp. 1891–1898, 2014.
Google Scholar
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9, 2015.
Google Scholar
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture for computer vision. IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826, 2016.
Google Scholar
C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. AAAI Conference, pp. 4278–4284, 2017.
Google Scholar
G. Taylor, R. Fergus, Y. LeCun, and C. Bregler. Convolutional learning of spatio-temporal features. European Conference on Computer Vision, pp. 140–153, 2010.
Google Scholar
D. Tran et al. Learning spatiotemporal features with 3d convolutional networks. IEEE International Conference on Computer Vision, 2015.
Google Scholar
R. Uijlings, A. van de Sande, T. Gevers, and M. Smeulders. Selective search for object recognition. International Journal of Computer Vision, 104(2), 2013.
Google Scholar
A. Vedaldi and K. Lenc. Matconvnet: Convolutional neural networks for matlab. ACM International Conference on Multimedia, pp. 689–692, 2005.http://www.vlfeat.org/matconvnet/
A. Veit, M. Wilber, and S. Belongie. Residual networks behave like ensembles of relatively shallow networks. NIPS Conference, pp. 550–558, 2016.
Google Scholar
O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural image caption generator. CVPR Conference, pp. 3156–3164, 2015.
Google Scholar
L. Wang, Y. Qiao, and X. Tang. Action recognition with trajectory-pooled deep-convolutional descriptors. IEEE Conference on Computer Vision and Pattern Recognition, pp. 4305–4314, 2015.
Google Scholar
T. Wang, D. Wu, A. Coates, and A. Ng. End-to-end text recognition with convolutional neural networks. International Conference on Pattern Recognition, pp. 3304–3308, 2012.
Google Scholar
S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He. Aggregated residual transformations for deep neural networks. arXiv:1611.05431, 2016.https://arxiv.org/abs/1611.05431
F. Yu and V. Koltun. Multi-scale context aggregation by dilated convolutions. arXiv:1511.07122, 2015.https://arxiv.org/abs/1511.07122
S. Zagoruyko and N. Komodakis. Wide residual networks. arXiv:1605.07146, 2016.https://arxiv.org/abs/1605.07146
M. Zeiler, D. Krishnan, G. Taylor, and R. Fergus. Deconvolutional networks. Computer Vision and Pattern Recognition (CVPR), pp. 2528–2535, 2010.
Google Scholar
M. Zeiler, G. Taylor, and R. Fergus. Adaptive deconvolutional networks for mid and high level feature learning. IEEE International Conference on Computer Vision (ICCV)—, pp. 2018–2025, 2011.
Google Scholar
M. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. European Conference on Computer Vision, Springer, pp. 818–833, 2013.
Google Scholar
X. Zhang, J. Zhao, and Y. LeCun. Character-level convolutional networks for text classification. NIPS Conference, pp. 649–657, 2015.
Google Scholar
C. Zitnick and P. Dollar. Edge Boxes: Locating object proposals from edges. ECCV, pp. 391–405, 2014.
Google Scholar
http://caffe.berkeleyvision.org/
http://torch.ch/
http://deeplearning.net/software/theano/
https://www.tensorflow.org/
https://keras.io/
https://lasagne.readthedocs.io/en/latest/
http://www.image-net.org/
http://www.image-net.org/challenges/LSVRC/
https://www.cs.toronto.edu/~kriz/cifar.html
http://code.google.com/p/cuda-convnet/
http://caffe.berkeleyvision.org/gathered/examples/feature_extraction.html
https://github.com/caffe2/caffe2/wiki/Model-Zoo
http://horatio.cs.nyu.edu/mit/tiny/data/