D. Ackley, G. Hinton, and T. Sejnowski. A learning algorithm for Boltzmann machines. Cognitive Science, 9(1), pp. 147–169, 1985.
CrossRef
Google Scholar
C. Aggarwal. Machine learning for text. Springer, 2018.
Google Scholar
Y. Bengio and O. Delalleau. Justifying and generalizing contrastive divergence. Neural Computation, 21(6), pp. 1601–1621, 2009.
MathSciNet
CrossRef
Google Scholar
M. Carreira-Perpinan and G. Hinton. On Contrastive Divergence Learning. AISTATS, 10, pp. 33–40, 2005.
Google Scholar
G. Dahl, R. Adams, and H. Larochelle. Training restricted Boltzmann machines on word observations. arXiv:1202.5695, 2012.https://arxiv.org/abs/1202.5695
A. Fischer and C. Igel. An introduction to restricted Boltzmann machines. Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, pp. 14–36, 2012.
Google Scholar
Y. Freund and D. Haussler. Unsupervised learning of distributions on binary vectors using two layer networks. Technical report, Santa Cruz, CA, USA, 1994
Google Scholar
P. Gehler, A. Holub, and M. Welling. The Rate Adapting Poisson (RAP) model for information retrieval and object recognition. ICML Confererence, 2006.
Google Scholar
W. Gilks, S. Richardson, and D. Spiegelhalter. Markov chain Monte Carlo in practice.CRC Press, 1995.
Google Scholar
G. Hinton. Training products of experts by minimizing contrastive divergence. Neural Computation, 14(8), pp. 1771–1800, 2002.
CrossRef
Google Scholar
G. Hinton. A practical guide to training restricted Boltzmann machines. Momentum, 9(1), 926, 2010.
Google Scholar
G. Hinton, P. Dayan, B. Frey, and R. Neal. The wake–sleep algorithm for unsupervised neural networks. Science, 268(5214), pp. 1158–1162, 1995.
CrossRef
Google Scholar
G. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief nets. Neural Computation, 18(7), pp. 1527–1554, 2006.
MathSciNet
CrossRef
Google Scholar
G. Hinton and T. Sejnowski. Learning and relearning in Boltzmann machines. Parallel Distributed Processing: Explorations in the Microstructure of Cognition, MIT Press, 1986.
Google Scholar
G. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313, (5766), pp. 504–507, 2006.
Google Scholar
G. Hinton and R. Salakhutdinov. Replicated softmax: an undirected topic model. NIPS Conference, pp. 1607–1614, 2009.
Google Scholar
G. Hinton and R. Salakhutdinov. A better way to pretrain deep Boltzmann machines. NIPS Conference, pp. 2447–2455, 2012.
Google Scholar
T. Hofmann. Probabilistic latent semantic indexing. ACM SIGIR Conference, pp. 50–57, 1999.
Google Scholar
J. J. Hopfield. Neural networks and physical systems with emergent collective computational abilities. National Academy of Sciences of the USA, 79(8), pp. 2554–2558, 1982.
MathSciNet
CrossRef
Google Scholar
D. Koller and N. Friedman. Probabilistic graphical models: principles and techniques. MIT Press, 2009.
Google Scholar
H. Larochelle and Y. Bengio. Classification using discriminative restricted Boltzmann machines. ICML Conference, pp. 536–543, 2008.
Google Scholar
H. Larochelle, M. Mandel, R. Pascanu, and Y. Bengio. Learning algorithms for the classification restricted Boltzmann machine. Journal of Machine Learning Research, 13, pp. 643–669, 2012.
MathSciNet
MATH
Google Scholar
H. Larochelle and I. Murray. The neural autoregressive distribution estimator. International Conference on Artificial Intelligence and Statistics, pp. 29–37, 2011.
Google Scholar
Y. LeCun, S. Chopra, R. M. Hadsell, M. A. Ranzato, and F.-J. Huang. A tutorial on energy-based learning. Predicting Structured Data, MIT Press, pp. 191–246,, 2006.
Google Scholar
G. Montufar and N. Ay. Refinements of universal approximation results for deep belief networks and restricted Boltzmann machines. Neural Computation, 23(5), pp. 1306–1319, 2011.
MathSciNet
CrossRef
Google Scholar
V. Nair and G. Hinton. Rectified linear units improve restricted Boltzmann machines. ICML Conference, pp. 807–814, 2010.
Google Scholar
R. M. Neal. Connectionist learning of belief networks. Artificial intelligence, 1992.
Google Scholar
R. M. Neal. Probabilistic inference using Markov chain Monte Carlo methods. Technical Report CRG-TR-93-1, 1993.
Google Scholar
R. M. Neal. Annealed importance sampling. Statistics and Computing, 11(2), pp. 125–139, 2001.
MathSciNet
CrossRef
Google Scholar
J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Ng. Multimodal deep learning. ICML Conference, pp. 689–696, 2011.
Google Scholar
C. Peterson and J. Anderson. A mean field theory learning algorithm for neural networks. Complex Systems, 1(5), pp. 995–1019, 1987.
MATH
Google Scholar
S. Rendle. Factorization machines. IEEE ICDM Conference, pp. 995–100, 2010.
Google Scholar
R. Salakhutdinov, A. Mnih, and G. Hinton. Restricted Boltzmann machines for collaborative filtering. ICML Confererence, pp. 791–798, 2007.
Google Scholar
R. Salakhutdinov and G. Hinton. Semantic Hashing. SIGIR workshop on Information Retrieval and applications of Graphical Models, 2007.
Google Scholar
R. Salakhutdinov and G. Hinton. Deep Boltzmann machines. Artificial Intelligence and Statistics, pp. 448–455, 2009.
Google Scholar
R. Salakhutdinov and H. Larochelle. Efficient Learning of Deep Boltzmann Machines. AISTATs, pp. 693–700, 2010.
Google Scholar
T. J. Sejnowski. Higher-order Boltzmann machines. AIP Conference Proceedings, 15(1), pp. 298–403, 1986.
MathSciNet
Google Scholar
P. Smolensky. Information processing in dynamical systems: Foundations of harmony theory. Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Volume 1: Foundations. pp. 194–281, 1986.
Google Scholar
N. Srivastava and R. Salakhutdinov. Multimodal learning with deep Boltzmann machines. NIPS Conference, pp. 2222–2230, 2012.
Google Scholar
N. Srivastava, R. Salakhutdinov, and G. Hinton. Modeling documents with deep Boltzmann machines. Uncertainty in Artificial Intelligence, 2013.
Google Scholar
A. Storkey. Increasing the capacity of a Hopfield network without sacrificing functionality. Artificial Neural Networks, pp. 451–456, 1997.
Google Scholar
I. Sutskever and T. Tieleman. On the convergence properties of contrastive divergence. International Conference on Artificial Intelligence and Statistics, pp. 789–795, 2010.
Google Scholar
T. Tieleman. Training restricted Boltzmann machines using approximations to the likelihood gradient. ICML Conference, pp. 1064–1071, 2008.
Google Scholar
Y. Teh and G. Hinton. Rate-coded restricted Boltzmann machines for face recognition. NIPS Conference, 2001.
Google Scholar
M. Welling, M. Rosen-Zvi, and G. Hinton. Exponential family harmoniums with an application to information retrieval. NIPS Conference, pp. 1481–1488, 2005.
Google Scholar
E. Xing, R. Yan, and A. Hauptmann. Mining associated text and images with dual-wing harmoniums. Uncertainty in Artificial Intelligence, 2005.
Google Scholar
http://www.netflixprize.com/community/topic_1537.html