C. Aggarwal. Data mining: The textbook. Springer, 2015.
Google Scholar
C. Aggarwal. Recommender systems: The textbook. Springer, 2016.
Google Scholar
C. Aggarwal. Machine learning for text. Springer, 2018.
Google Scholar
E. Aljalbout, V. Golkov, Y. Siddiqui, and D. Cremers. Clustering with deep learning: Taxonomy and new methods. arXiv:1801.07648, 2018.https://arxiv.org/abs/1801.07648
R. Al-Rfou, B. Perozzi, and S. Skiena. Polyglot: Distributed word representations for multilingual nlp. arXiv:1307.1662, 2013.https://arxiv.org/abs/1307.1662
C. M. Bishop. Pattern recognition and machine learning. Springer, 2007.
Google Scholar
C. M. Bishop. Neural networks for pattern recognition. Oxford University Press, 1995.
Google Scholar
H. Bourlard and Y. Kamp. Auto-association by multilayer perceptrons and singular value decomposition. Biological Cybernetics, 59(4), pp. 291–294, 1988.
Google Scholar
S. Chang, W. Han, J. Tang, G. Qi, C. Aggarwal, and T. Huang. Heterogeneous network embedding via deep architectures. ACM KDD Conference, pp. 119–128, 2015.
Google Scholar
J. Chen, S. Sathe, C. Aggarwal, and D. Turaga. Outlier detection with autoencoder ensembles. SIAM Conference on Data Mining, 2017.
Google Scholar
Y. Chen and M. Zaki. KATE: K-Competitive Autoencoder for Text. ACM KDD Conference, 2017.
Google Scholar
A. Coates, A. Ng, and H. Lee. An analysis of single-layer networks in unsupervised feature learning. AAAI Conference, pp. 215–223, 2011.
Google Scholar
C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3), pp. 273–297, 1995.
Google Scholar
M. Denil, B. Shakibi, L. Dinh, M. A. Ranzato, and N. de Freitas. Predicting parameters in deep learning. NIPS Conference, pp. 2148–2156, 2013.
Google Scholar
F. Despagne and D. Massart. Neural networks in multivariate calibration. Analyst, 123(11), pp. 157R–178R, 1998.
Google Scholar
C. Ding, T. Li, and W. Peng. On the equivalence between non-negative matrix factorization and probabilistic latent semantic indexing. Computational Statistics and Data Analysis, 52(8), pp. 3913–3927, 2008.
Google Scholar
C. Doersch. Tutorial on variational autoencoders. arXiv:1606.05908, 2016.https://arxiv.org/abs/1606.05908
A. Elkahky, Y. Song, and X. He. A multi-view deep learning approach for cross domain user modeling in recommendation systems. WWW Conference, pp. 278–288, 2015.
Google Scholar
R. Fisher. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7: pp. 179–188, 1936.
Google Scholar
F. Girosi and T. Poggio. Networks and the best approximation property. Biological Cybernetics, 63(3), pp. 169–176, 1990.
Google Scholar
A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks. ACM KDD Conference, pp. 855–864, 2016.
Google Scholar
M. Gutmann and A. Hyvarinen. Noise-contrastive estimation: A new estimation principle for unnormalized statistical models. AISTATS, 1(2), pp. 6, 2010.
Google Scholar
T. Hastie and R. Tibshirani. Generalized additive models. CRC Press, 1990.
Google Scholar
S. Hawkins, H. He, G. Williams, and R. Baxter. Outlier detection using replicator neural networks. International Conference on Data Warehousing and Knowledge Discovery, pp. 170–180, 2002.
Google Scholar
X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T. S. Chua. Neural collaborative filtering. WWW Conference, pp. 173–182, 2017.
Google Scholar
G. Hinton. Connectionist learning procedures. Artificial Intelligence, 40(1–3), pp. 185–234, 1989.
Google Scholar
G. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313, (5766), pp. 504–507, 2006.
Google Scholar
T. Hofmann. Probabilistic latent semantic indexing. ACM SIGIR Conference, pp. 50–57, 1999.
Google Scholar
C. Johnson. Logistic matrix factorization for implicit feedback data. NIPS Conference, 2014.
Google Scholar
D. Kingma and M. Welling. Auto-encoding variational bayes. arXiv:1312.6114, 2013.https://arxiv.org/abs/1312.6114
Y. Koren. Factor in the neighbors: Scalable and accurate collaborative filtering. ACM Transactions on Knowledge Discovery from Data (TKDD), 4(1), 1, 2010.
Google Scholar
Q. Le and T. Mikolov. Distributed representations of sentences and documents. ICML Conference, pp. 1188–196, 2014.
Google Scholar
Q. Le, J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, and A. Ng, On optimization methods for deep learning. ICML Conference, pp. 265–272, 2011.
Google Scholar
Q. Le, W. Zou, S. Yeung, and A. Ng. Learning hierarchical spatio-temporal features for action recognition with independent subspace analysis. CVPR Conference, 2011.
Google Scholar
Y. LeCun. Modeles connexionnistes de l’apprentissage. Doctoral Dissertation, Universite Paris, 1987.
Google Scholar
H. Lee, C. Ekanadham, and A. Ng. Sparse deep belief net model for visual area V2. NIPS Conference, 2008.
Google Scholar
O. Levy and Y. Goldberg. Neural word embedding as implicit matrix factorization. NIPS Conference, pp. 2177–2185, 2014.
Google Scholar
O. Levy, Y. Goldberg, and I. Dagan. Improving distributional similarity with lessons learned from word embeddings. Transactions of the Association for Computational Linguistics, 3, pp. 211–225, 2015.
Google Scholar
D. Liben-Nowell, and J. Kleinberg. The link-prediction problem for social networks. Journal of the American Society for Information Science and Technology, 58(7), pp. 1019–1031, 2007.
Google Scholar
L. Maaten and G. E. Hinton. Visualizing data using t-SNE. Journal of Machine Learning Research, 9, pp. 2579–2605, 2008.
Google Scholar
A. Makhzani and B. Frey. K-sparse autoencoders. arXiv:1312.5663, 2013.https://arxiv.org/abs/1312.5663
A. Makhzani and B. Frey. Winner-take-all autoencoders. NIPS Conference, pp. 2791–2799, 2015.
Google Scholar
C. Manning and R. Socher. CS224N: Natural language processing with deep learning. Stanford University School of Engineering, 2017. https://www.youtube.com/watch?v=OQQ-W_63UgQ
P. McCullagh and J. Nelder. Generalized linear models CRC Press, 1989.
Google Scholar
G. McLachlan. Discriminant analysis and statistical pattern recognition John Wiley & Sons, 2004.
Google Scholar
T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations in vector space. arXiv:1301.3781, 2013.https://arxiv.org/abs/1301.3781
T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. NIPS Conference, pp. 3111–3119, 2013.
Google Scholar
G. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. J. Miller. Introduction to WordNet: An on-line lexical database. International Journal of Lexicography, 3(4), pp. 235–312, 1990.https://wordnet.princeton.edu/
A. Mnih and G. Hinton. A scalable hierarchical distributed language model. NIPS Conference, pp. 1081–1088, 2009.
Google Scholar
A. Mnih and K. Kavukcuoglu. Learning word embeddings efficiently with noise-contrastive estimation. NIPS Conference, pp. 2265–2273, 2013.
Google Scholar
A. Mnih and Y. Teh. A fast and simple algorithm for training neural probabilistic language models. arXiv:1206.6426, 2012.https://arxiv.org/abs/1206.6426
F. Morin and Y. Bengio. Hierarchical Probabilistic Neural Network Language Model. AISTATS, pp. 246–252, 2005.
Google Scholar
A. Ng. Sparse autoencoder. CS294A Lecture notes, 2011. https://nlp.stanford.edu/~socherr/sparseAutoencoder_2011new.pdf
https://web.stanford.edu/class/cs294a/sparseAutoencoder_2011new.pdf
J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Ng. Multimodal deep learning. ICML Conference, pp. 689–696, 2011.
Google Scholar
J. Pennington, R. Socher, and C. Manning. Glove: Global Vectors for Word Representation. EMNLP, pp. 1532–1543, 2014.
Google Scholar
B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of social representations. ACM KDD Conference, pp. 701–710.
Google Scholar
R. Rehurek and P. Sojka. Software framework for topic modelling with large corpora. LREC 2010 Workshop on New Challenges for NLP Frameworks, pp. 45–50, 2010. https://radimrehurek.com/gensim/index.html
S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio. Contractive auto-encoders: Explicit invariance during feature extraction. ICML Conference, pp. 833–840, 2011.
Google Scholar
D. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference in deep generative models. arXiv:1401.4082, 2014.https://arxiv.org/abs/1401.4082
R. Rifkin. Everything old is new again: a fresh look at historical approaches in machine learning. Ph.D. Thesis, Massachusetts Institute of Technology, 2002.
Google Scholar
R. Rifkin and A. Klautau. In defense of one-vs-all classification. Journal of Machine Learning Research, 5, pp. 101–141, 2004.
Google Scholar
X. Rong. word2vec parameter learning explained. arXiv:1411.2738, 2014.https://arxiv.org/abs/1411.2738
F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386, 1958.
Google Scholar
D. Ruck, S. Rogers, and M. Kabrisky. Feature selection using a multilayer perceptron. Journal of Neural Network Computing, 2(2), pp. 40–88, 1990.
Google Scholar
D. Rumelhart, G. Hinton, and R. Williams. Learning representations by back-propagating errors. Nature, 323 (6088), pp. 533–536, 1986.
Google Scholar
R. Salakhutdinov, A. Mnih, and G. Hinton. Restricted Boltzmann machines for collaborative filtering. ICML Confererence, pp. 791–798, 2007.
Google Scholar
S. Sedhain, A. K. Menon, S. Sanner, and L. Xie. Autorec: Autoencoders meet collaborative filtering. WWW Conference, pp. 111–112, 2015.
Google Scholar
A. Shashua. On the equivalence between the support vector machine for classification and sparsified Fisher’s linear discriminant. Neural Processing Letters, 9(2), pp. 129–139, 1999.
Google Scholar
S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pegasos: Primal estimated sub-gradient solver for SVM. Mathematical Programming, 127(1), pp. 3–30, 2011.
Google Scholar
Y. Song, A. Elkahky, and X. He. Multi-rate deep learning for temporal recommendation. ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 909–912, 2016.
Google Scholar
J. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller. Striving for simplicity: The all convolutional net. arXiv:1412.6806, 2014.https://arxiv.org/abs/1412.6806
N. Srivastava and R. Salakhutdinov. Multimodal learning with deep Boltzmann machines. NIPS Conference, pp. 2222–2230, 2012.
Google Scholar
F. Strub and J. Mary. Collaborative filtering with stacked denoising autoencoders and sparse inputs. NIPS Workshop on Machine Learning for eCommerce, 2015.
Google Scholar
A. Tikhonov and V. Arsenin. Solution of ill-posed problems. Winston and Sons, 1977.
Google Scholar
P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol. Extracting and composing robust features with denoising autoencoders. ICML Confererence, pp. 1096–1103, 2008.
Google Scholar
D. Wang, P. Cui, and W. Zhu. Structural deep network embedding. ACM KDD Conference, pp. 1225–1234, 2016.
Google Scholar
H. Wang, N. Wang, and D. Yeung. Collaborative deep learning for recommender systems. ACM KDD Conference, pp. 1235–1244, 2015.
Google Scholar
K. Weinberger, B. Packer, and L. Saul. Nonlinear Dimensionality Reduction by Semidefinite Programming and Kernel Matrix Factorization. AISTATS, 2005.
Google Scholar
J. Weston and C. Watkins. Multi-class support vector machines. Technical Report CSD-TR-98-04, Department of Computer Science, Royal Holloway, University of London, May, 1998.
Google Scholar
B. Widrow and M. Hoff. Adaptive switching circuits. IRE WESCON Convention Record, 4(1), pp. 96–104, 1960.
Google Scholar
Y. Wu, C. DuBois, A. Zheng, and M. Ester. Collaborative denoising auto-encoders for top-n recommender systems. Web Search and Data Mining, pp. 153–162, 2016.
Google Scholar
W. Yu, W. Cheng, C. Aggarwal, K. Zhang, H. Chen, and Wei Wang. NetWalk: A flexible deep embedding approach for anomaly Detection in dynamic networks, ACM KDD Conference, 2018.
Google Scholar
W. Yu, C. Zheng, W. Cheng, C. Aggarwal, D. Song, B. Zong, H. Chen, and W. Wang. Learning deep network representations with adversarially regularized autoencoders. ACM KDD Conference, 2018.
Google Scholar
D. Zhang, Z.-H. Zhou, and S. Chen. Non-negative matrix factorization on kernels. Trends in Artificial Intelligence, pp. 404–412, 2006.
Google Scholar
S. Zhang, L. Yao, and A. Sun. Deep learning based recommender system: A survey and new perspectives. arXiv:1707.07435, 2017.https://arxiv.org/abs/1707.07435
C. Zhou and R. Paffenroth. Anomaly detection with robust deep autoencoders. ACM KDD Conference, pp. 665–674, 2017.
Google Scholar
http://scikit-learn.org/
http://clic.cimec.unitn.it/composes/toolkit/
https://github.com/stanfordnlp/GloVe
https://deeplearning4j.org/
https://code.google.com/archive/p/word2vec/
https://www.tensorflow.org/tutorials/word2vec/
https://github.com/aditya-grover/node2vec