M. Arjovsky and L. Bottou. Towards principled methods for training generative adversarial networks. arXiv:1701.04862, 2017. https://arxiv.org/abs/1701.04862
M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein gan. arXiv:1701.07875, 2017. https://arxiv.org/abs/1701.07875
J. Ba, V. Mnih, and K. Kavukcuoglu. Multiple object recognition with visual attention. arXiv: 1412.7755, 2014. https://arxiv.org/abs/1412.7755
D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and translate. ICLR, 2015. Also arXiv:1409.0473, 2014. https://arxiv.org/abs/1409.0473
N. Butko and J. Movellan. I-POMDP: An infomax model of eye movement. IEEE International Conference on Development and Learning, pp. 139–144, 2008.
Google Scholar
Y. Cao, Y. Chen, and D. Khosla. Spiking deep convolutional neural networks for energy-efficient object recognition. International Journal of Computer Vision, 113(1), 54–66, 2015.
Google Scholar
Y. Chen, T. Krishna, J. Emer, and V. Sze. Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks. IEEE Journal of Solid-State Circuits, 52(1), pp. 127–138, 2017.
Google Scholar
A. Coates and A. Ng. The importance of encoding versus training with sparse coding and vector quantization. ICML Confererence, pp. 921–928, 2011.
Google Scholar
M. Courbariaux, Y. Bengio, and J.-P. David. BinaryConnect: Training deep neural networks with binary weights during propagations. arXiv:1511.00363, 2015. https://arxiv.org/pdf/1511.00363.pdf
E. Denton, S. Chintala, and R. Fergus. Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks. NIPS Conference, pp. 1466–1494, 2015.
Google Scholar
A. Dosovitskiy, J. Tobias Springenberg, and T. Brox. Learning to generate chairs with convolutional neural networks. CVPR Conference, pp. 1538–1546, 2015.
Google Scholar
V. Dumoulin and F. Visin. A guide to convolution arithmetic for deep learning. arXiv:1603.07285, 2016. https://arxiv.org/abs/1603.07285
S. Essar et al. Convolutional neural networks for fast, energy-efficient neuromorphic computing. Proceedings of the National Academy of Science of the United States of America, 113(41), pp. 11441–11446, 2016.
Google Scholar
L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of object categories. IEEE TPAMI, 28(4), pp. 594–611, 2006.
Google Scholar
B. Fritzke. A growing neural gas network learns topologies. NIPS Conference, pp. 625–632, 1995.
Google Scholar
S. Gallant. Neural network learning and expert systems. MIT Press, 1993.
Google Scholar
A. Gersho and R. M. Gray. Vector quantization and signal compression. Springer Science and Business Media, 2012.
Google Scholar
I. Goodfellow. NIPS 2016 tutorial: Generative adversarial networks. arXiv:1701.00160, 2016. https://arxiv.org/abs/1701.00160
I. Goodfellow et al. Generative adversarial nets. NIPS Conference, 2014.
Google Scholar
A. Graves, G. Wayne, and I. Danihelka. Neural turing machines. arXiv:1410.5401, 2014. https://arxiv.org/abs/1410.5401
A. Graves et al. Hybrid computing using a neural network with dynamic external memory. Nature, 538.7626, pp. 471–476, 2016.
Google Scholar
S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. Horowitz, and W. Dally. EIE: Efficient Inference Engine for Compressed Neural Network. ACM SIGARCH Computer Architecture News, 44(3), pp. 243–254, 2016.
CrossRef
Google Scholar
S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights and connections for efficient neural networks. NIPS Conference, pp. 1135–1143, 2015.
Google Scholar
F. Iandola, S. Han, M. Moskewicz, K. Ashraf, W. Dally, and K. Keutzer. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5 MB model size. arXiv:1602.07360, 2016. https://arxiv.org/abs/1602.07360
S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167, 2015.
Google Scholar
P. Isola, J. Zhu, T. Zhou, and A. Efros. Image-to-image translation with conditional adversarial networks. arXiv:1611.07004, 2016. https://arxiv.org/abs/1611.07004
L. Kaiser and I. Sutskever. Neural GPUs learn algorithms. arXiv:1511.08228, 2015. https://arxiv.org/abs/1511.08228
T. Kohonen. The self-organizing map. Neurocomputing, 21(1), pp. 1–6, 1998.
MathSciNet
CrossRef
Google Scholar
T. Kohonen. Self-organization and associative memory. Springer, 2012.
Google Scholar
T. Kohonen. Self-organizing maps, Springer, 2001.
Google Scholar
A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. NIPS Conference, pp. 1097–1105. 2012.
Google Scholar
A. Kumar et al. Ask me anything: Dynamic memory networks for natural language processing. ICML Confererence, 2016.
Google Scholar
B. Lake, T. Ullman, J. Tenenbaum, and S. Gershman. Building machines that learn and think like people. Behavioral and Brain Sciences, pp. 1–101, 2016.
Google Scholar
H. Larochelle and G. E. Hinton. Learning to combine foveal glimpses with a third-order Boltzmann machine. NIPS Conference, 2010.
Google Scholar
W. Levy and R. Baxter. Energy efficient neural codes. Neural Computation, 8(3), pp. 531–543, 1996.
CrossRef
Google Scholar
J. Lu, J. Yang, D. Batra, and D. Parikh. Hierarchical question-image co-attention for visual question answering. NIPS Conference, pp. 289–297, 2016.
Google Scholar
M. Luong, H. Pham, and C. Manning. Effective approaches to attention-based neural machine translation. arXiv:1508.04025, 2015. https://arxiv.org/abs/1508.04025
A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey. Adversarial autoencoders. arXiv:1511.05644, 2015. https://arxiv.org/abs/1511.05644
T. Martinetz, S. Berkovich, and K. Schulten. ‘Neural-gas’ network for vector quantization and its application to time-series prediction. IEEE Transactions on Neural Network, 4(4), pp. 558–569, 1993.
Google Scholar
M. Mathieu, C. Couprie, and Y. LeCun. Deep multi-scale video prediction beyond mean square error. arXiv:1511.054, 2015. https://arxiv.org/abs/1511.05440
M. Mirza and S. Osindero. Conditional generative adversarial nets. arXiv:1411.1784, 2014. https://arxiv.org/abs/1411.1784
V. Mnih, N. Heess, and A. Graves. Recurrent models of visual attention. NIPS Conference, pp. 2204–2212, 2014.
Google Scholar
M. Palatucci, D. Pomerleau, G. Hinton, and T. Mitchell. Zero-shot learning with semantic output codes. NIPS Conference, pp. 1410–1418, 2009.
Google Scholar
D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros. Context encoders: Feature learning by inpainting. CVPR Conference, 2016.
Google Scholar
A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv:1511.06434, 2015. https://arxiv.org/abs/1511.06434
M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-net: Imagenet classification using binary convolutional neural networks. European Conference on Computer Vision, pp. 525–542, 2016.
Google Scholar
S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee. Generative adversarial text to image synthesis. ICML Conference, pp. 1060–1069, 2016.
Google Scholar
S. Reed and N. de Freitas. Neural programmer-interpreters. arXiv:1511.06279, 2015.
Google Scholar
M. Ren, R. Kiros, and R. Zemel. Exploring models and data for image question answering. NIPS Conference, pp. 2953–2961, 2015.
Google Scholar
B. Romera-Paredes and P. Torr. An embarrassingly simple approach to zero-shot learning. ICML Confererence, pp. 2152–2161, 2015.
Google Scholar
D. Rumelhart, D. Zipser, and J. McClelland. Parallel Distributed Processing, MIT Press, pp. 151–193, 1986.
Google Scholar
D. Rumelhart and D. Zipser. Feature discovery by competitive learning. Cognitive science, 9(1), pp. 75–112, 1985.
CrossRef
Google Scholar
A. M. Rush, S. Chopra, and J. Weston. A Neural Attention Model for Abstractive Sentence Summarization. arXiv:1509.00685, 2015. https://arxiv.org/abs/1509.00685
A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap. One shot learning with memory-augmented neural networks. arXiv: 1605:06065, 2016. https://www.arxiv.org/pdf/1605.06065.pdf
T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved techniques for training gans. NIPS Conference, pp. 2234–2242, 2016.
Google Scholar
H. Siegelmann and E. Sontag. On the computational power of neural nets. Journal of Computer and System Sciences, 50(1), pp. 132–150, 1995.
MathSciNet
CrossRef
Google Scholar
Socher, Richard, Milind Ganjoo, Christopher D. Manning, and Andrew Ng. Zero-shot learning through cross-modal transfer. NIPS Conference, pp. 935–943, 2013.
Google Scholar
S. Sukhbaatar, J. Weston, and R. Fergus. End-to-end memory networks. NIPS Conference, pp. 2440–2448, 2015.
Google Scholar
S. Thrun and L. Platt. Learning to learn. Springer, 2012.
Google Scholar
O. Vinyals, C. Blundell, T. Lillicrap, and D. Wierstra. Matching networks for one-shot learning. NIPS Conference, pp. 3530–3638, 2016.
Google Scholar
X. Wang and A. Gupta. Generative image modeling using style and structure adversarial networks. ECCV, 2016.
Google Scholar
J. Weston, S. Chopra, and A. Bordes. Memory networks. ICLR, 2015.
Google Scholar
C. Xiong, S. Merity, and R. Socher. Dynamic memory networks for visual and textual question answering. ICML Confererence, pp. 2397–2406, 2016.
Google Scholar
K. Xu et al. Show, attend, and tell: Neural image caption generation with visual attention. ICML Confererence, 2015.
Google Scholar
Z. Yang, X. He, J. Gao, L. Deng, and A. Smola. Stacked attention networks for image question answering. IEEE Conference on Computer Vision and Pattern Recognition, pp. 21–29, 2016.
Google Scholar
X. Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87(9), pp. 1423–1447, 1999.
CrossRef
Google Scholar
L. Yu, W. Zhang, J. Wang, and Y. Yu. SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient. AAAI Conference, pp. 2852–2858, 2017.
Google Scholar
W. Zaremba and I. Sutskever. Reinforcement learning neural turing machines. arXiv:1505.00521, 2015.
Google Scholar
W. Zaremba, T. Mikolov, A. Joulin, and R. Fergus. Learning simple algorithms from examples. ICML Confererence, pp. 421–429, 2016.
Google Scholar
J. Zhao, M. Mathieu, and Y. LeCun. Energy-based generative adversarial network. arXiv:1609.03126, 2016. https://arxiv.org/abs/1609.03126
https://github.com/Element-Research/rnn/blob/master/examples/
https://github.com/lmthang/nmt.matlab
https://github.com/carpedm20/NTM-tensorflow
https://github.com/camigord/Neural-Turing-Machine
https://github.com/SigmaQuan/NTM-Keras
https://github.com/snipsco/ntm-lasagne
https://github.com/kaishengtai/torch-ntm
https://github.com/facebook/MemNN
https://github.com/carpedm20/MemN2N-tensorflow
https://github.com/YerevaNN/Dynamic-memory-networks-in-Theano
https://github.com/carpedm20/DCGAN-tensorflow
https://github.com/carpedm20
https://github.com/jacobgil/keras-dcgan
https://github.com/wiseodd/generative-models
https://github.com/paarthneekhara/text-to-image