Copper Homeostasis in Gram-Negative Bacteria

  • Marc SoliozEmail author
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)


Copper homeostasis in Gram-negative organisms is complicated by the two cell membranes and the periplasmic space. The thinking of how copper enters bacteria like E. coli has undergone some changes recently and new concepts have emerged. Also, the elusive CopZ-like copper chaperone has finally been discovered in E. coli. While the extrusion of excess copper via the CopA copper ATPase and the CusCFBA transporter and the regulation of these systems appear fairly clear, there are still major open questions concerning the metallation of cuproenzymes. Some provocative new concepts will be proposed.


Gram-negative Escherichia coli Two-component regulator RND-transporter Periplasm Multicopper oxidase Copper uptake Photosynthesis Cyanobacteria Methanogens 


  1. 1.
    Tottey S, Rich PR, Rondet SA et al (2001) Two Menkes-type atpases supply copper for photosynthesis in Synechocystis PCC 6803. J Biol Chem 276:19999–20004PubMedCrossRefGoogle Scholar
  2. 2.
    Phung LT, Ajlani G, Haselkorn R (1994) P-type ATPase from the cyanobacterium Synechococcus 7942 related to the human Menkes and Wilson disease gene products. Proc Natl Acad Sci U S A 91:9651–9654PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Lewinson O, Lee AT, Rees DC (2009) A P-type ATPase importer that discriminates between essential and toxic transition metals. Proc Natl Acad Sci U S A 106:4677–4682PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Odermatt A, Krapf R, Solioz M (1994) Induction of the putative copper ATPases, CopA and CopB, of Enterococcus hirae by Ag+ and Cu2+, and Ag+ extrusion by CopB. Biochem Biophys Res Commun 202:44–48PubMedCrossRefGoogle Scholar
  5. 5.
    Koch HG, Winterstein C, Saribas AS et al (2000) Roles of the ccoGHIS gene products in the biogenesis of the cbb3-type cytochrome c oxidase. J Mol Biol 297:49–65PubMedCrossRefGoogle Scholar
  6. 6.
    Hassani BK, Astier C, Nitschke W et al (2010) CtpA a copper-translocating P-type ATPase involved in the biogenesis of multiple copper-requiring enzymes. J Biol Chem 285:19330–19337PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Koh EI, Henderson JP (2015) Microbial copper-binding siderophores at the host-pathogen interface. J Biol Chem 290:18967–18974PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Wilson BR, Bogdan AR, Miyazawa M et al (2016) Siderophores in iron metabolism: from mechanism to therapy potential. Trends Mol Med 22:1077–1090PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Koh EI, Robinson AE, Bandara N et al (2017) Copper import in Escherichia coli by the yersiniabactin metallophore system. Nat Chem Biol 13:1016–1021PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Noinaj N, Guillier M, Barnard TJ et al (2010) TonB-dependent transporters: regulation, structure, and function. Annu Rev Microbiol 64:43–60PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Cavet JS (2014) Copper as a magic bullet for targeted microbial killing. Chem Biol 21:921–922PubMedCrossRefGoogle Scholar
  12. 12.
    Solioz M (2016) Copper oxidation state and mycobacterial infection. Mycobact Dis 6:210–213CrossRefGoogle Scholar
  13. 13.
    Kim HJ, Graham DW, DiSpirito AA et al (2004) Methanobactin, a copper-acquisition compound from methane-oxidizing bacteria. Science 305:1612–1615PubMedCrossRefGoogle Scholar
  14. 14.
    Kenney GE, Rosenzweig AC (2013) Genome mining for methanobactins. BMC Biol 11:17PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    DiSpirito AA, Semrau JD, Murrell JC et al (2016) Methanobactin and the link between copper and bacterial methane oxidation. Microbiol Mol Biol Rev 80:387–409PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Balasubramanian R, Kenney GE, Rosenzweig AC (2011) Dual pathways for copper uptake by methanotrophic bacteria. J Biol Chem 286:37313–37319PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Ve T, Mathisen K, Helland R et al (2012) The Methylococcus capsulatus (Bath) secreted protein, MopE*, binds both reduced and oxidized copper. PLoS ONE 7:e43146PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Zhang XX, Rainey PB (2008) Regulation of copper homeostasis in Pseudomonas fluorescens SBW25. Environ Microbiol 10:3284–3294PubMedCrossRefGoogle Scholar
  19. 19.
    Wijekoon CJ, Young TR, Wedd AG et al (2015) CopC protein from Pseudomonas fluorescens SBW25 features a conserved novel high-affinity Cu(II) binding site. Inorg Chem 54:2950–2959PubMedCrossRefGoogle Scholar
  20. 20.
    Lawton TJ, Kenney GE, Hurley JD et al (2016) The CopC family: structural and bioinformatic insights into a diverse group of periplasmic copper binding proteins. Biochemistry 55:2278–2290PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Hirooka K, Edahiro T, Kimura K et al (2012) Direct and indirect regulation of the ycnKJI operon involved in copper uptake through two transcriptional repressors, YcnK and CsoR, in Bacillus subtilis. J Bacteriol 194:5675–5687PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Cha JS, Cooksey DA (1993) Copper hypersensitivity and uptake in Pseudomonas syringae containing cloned components of the copper resistance operon. Appl Environ Microbiol 59:1671–1674PubMedPubMedCentralGoogle Scholar
  23. 23.
    Gu W, Farhan Ul Haque M, Semrau JD (2017) Characterization of the role of copCD in copper uptake and the “copper-switch” in Methylosinus trichosporium OB3b. FEMS Microbiol Lett 164:fnx094Google Scholar
  24. 24.
    Kanamaru K, Kashiwagi S, Mizuno T (1994) A copper-transporting P-type ATPase found in the thylakoid membrane of the cyanobacterium Synechococcus species PCC7942. Mol Microbiol 13:369–377PubMedCrossRefGoogle Scholar
  25. 25.
    Verméglio A, Lavergne J, Rappaport F (2016) Connectivity of the intracytoplasmic membrane of Rhodobacter sphaeroides: a functional approach. Photosynth Res 127:13–24PubMedCrossRefGoogle Scholar
  26. 26.
    Niederman RA (2016) Development and dynamics of the photosynthetic apparatus in purple phototrophic bacteria. Biochim Biophys Acta 1857:232–246PubMedCrossRefGoogle Scholar
  27. 27.
    Ekici S, Yang H, Koch HG et al (2012) Novel transporter required for biogenesis of cbb3-type cytochrome c oxidase in Rhodobacter capsulata. MBio 3:e00293-11PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Ekici S, Turkarslan S, Pawlik G et al (2014) Intracytoplasmic copper homeostasis controls cytochrome c oxidase production. MBio 5Google Scholar
  29. 29.
    Wang Y, Hodgkinson V, Zhu S et al (2011) Advances in the understanding of mammalian copper transporters. Adv Nutr 2:129–137PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Beaudoin J, Ioannoni R, Lopez-Maury L et al (2011) Mfc1 is a novel forespore membrane copper transporter in meiotic and sporulating cells. J Biol Chem 286:34356–34372PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Beaudoin J, Ioannoni R, Labbe S (2012) Mfc1 is a novel copper transporter during meiosis. Commun Integr Biol 5:118–121PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Beaudoin J, Ekici S, Daldal F et al (2013) Copper transport and regulation in Schizosaccharomyces pombe. Biochem Soc Trans 41:1679–1686PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Khalfaoui-Hassani B, Verissimo AF, Koch HG et al (2016) Uncovering the transmembrane metal binding site of the novel bacterial major facilitator superfamily-type copper importer CcoA. MBio 7:e01981-15PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Meydan S, Klepacki D, Karthikeyan S et al (2017) Programmed ribosomal frameshifting generates a copper transporter and a copper chaperone from the same gene. Mol Cell 65:207–219PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Drees SL, Klinkert B, Helling S et al (2017) One gene, two proteins: coordinated production of a copper chaperone by differential transcript formation and translational frameshifting in Escherichia coli. Mol Microbiol 106:635–645PubMedCrossRefGoogle Scholar
  36. 36.
    Gupta A, Lutsenko S (2009) Human copper transporters: mechanism, role in human diseases and therapeutic potential. Future Med Chem 1:1125–1142PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Outten FW, Outten CE, Hale J et al (2000) Transcriptional activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue, CueR. J Biol Chem 275:31024–31029PubMedCrossRefGoogle Scholar
  38. 38.
    Djoko KY, Chong LX, Wedd AG et al (2010) Reaction mechanisms of the multicopper oxidase CueO from Escherichia coli support its functional role as a cuprous oxidase. J Am Chem Soc 132:2005–2015PubMedCrossRefGoogle Scholar
  39. 39.
    Grass G, Thakali K, Klebba PE et al (2004) Linkage between catecholate siderophores and the multicopper oxidase CueO in Escherichia coli. J Bacteriol 186:5826–5833PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Tree JJ, Kidd SP, Jennings MP et al (2005) Copper sensitivity of cueO mutants of Escherichia coli K-12 and the biochemical suppression of this phenotype. Biochem Biophys Res Commun 328:1205–1210PubMedCrossRefGoogle Scholar
  41. 41.
    Grass G, Rensing C (2001) CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli. Biochem Biophys Res Commun 286:902–908PubMedCrossRefGoogle Scholar
  42. 42.
    Singh SK, Grass G, Rensing C et al (2004) Cuprous oxidase activity of CueO from Escherichia coli. J Bacteriol 186:7815–7817PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Wu T, Wang S, Wang Z et al (2015) A multicopper oxidase contributes to the copper tolerance of Brucella melitensis 16M. FEMS Microbiol Lett 362:1–7PubMedGoogle Scholar
  44. 44.
    Mancini S, Kumar R, Mishra V et al (2017) Desulfovibrio DA2_CueO is a novel multicopper oxidase with cuprous, ferrous, and phenol oxidase activity. Microbiol 163:1229–1236CrossRefGoogle Scholar
  45. 45.
    Rowland JL, Niederweis M (2013) A multicopper oxidase is required for copper resistance in Mycobacterium tuberculosis. J Bacteriol 195:3724–3733PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Wagner D, Maser J, Moric I et al (2006) Elemental analysis of the Mycobacterium avium phagosome in Balb/c mouse macrophages. Biochem Biophys Res Commun 344:1346–1351PubMedCrossRefGoogle Scholar
  47. 47.
    Hodgkinson V, Petris MJ (2012) Copper homeostasis at the host-pathogen interface. J Biol Chem 287:13549–13555PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Hasan NM, Lutsenko S (2012) Regulation of copper transporters in human cells. Curr Top Membr 69:137–161PubMedCrossRefGoogle Scholar
  49. 49.
    Achard ME, Tree JJ, Holden JA et al (2010) The multi-copper oxidase CueO of Salmonella enterica serovar Typhimurium is required for systemic virulence. Infect Immun 78:2312–2319PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Osman D, Cavet JS (2011) Metal sensing in Salmonella: implications for pathogenesis. Adv Microb Physiol 58:175–232PubMedCrossRefGoogle Scholar
  51. 51.
    Huston WM, Jennings MP, McEwan AG (2002) The multicopper oxidase of Pseudomonas aeruginosa is a ferroxidase with a central role in iron acquisition. Mol Microbiol 45:1741–1750PubMedCrossRefGoogle Scholar
  52. 52.
    Huston WM, Naylor J, Cianciotto NP et al (2008) Functional analysis of the multi-copper oxidase from Legionella pneumophila. Microbes Infect 10:497–503PubMedCrossRefGoogle Scholar
  53. 53.
    Rodriguez-Montelongo L, Volentini SI, Farias RN et al (2006) The Cu(II)-reductase NADH dehydrogenase-2 of Escherichia coli improves the bacterial growth in extreme copper concentrations and increases the resistance to the damage caused by copper and hydroperoxide. Arch Biochem Biophys 451:1–7PubMedCrossRefGoogle Scholar
  54. 54.
    Volentini SI, Farias RN, Rodriguez-Montelongo L et al (2011) Cu(II)-reduction by Escherichia coli cells is dependent on respiratory chain components. Biometals 24:827–835PubMedCrossRefGoogle Scholar
  55. 55.
    Abicht HK, Gonskikh Y, Gerber SD et al (2013) Non-enzymatic copper reduction by menaquinone enhances copper toxicity in Lactococcus lactis IL1403. Microbiol 159:1190–1197CrossRefGoogle Scholar
  56. 56.
    Mermod M, Magnani D, Solioz M et al (2012) The copper-inducible ComR (YcfQ) repressor regulates expression of ComC (YcfR), which affects copper permeability of the outer membrane of Escherichia coli. Biometals 25:33–43PubMedCrossRefGoogle Scholar
  57. 57.
    Yu Z, Reichheld SE, Savchenko A et al (2010) A comprehensive analysis of structural and sequence conservation in the TetR family transcriptional regulators. J Mol Biol 400:847–864PubMedCrossRefGoogle Scholar
  58. 58.
    Padilla-Benavides T, George Thompson AM, McEvoy MM et al (2014) Mechanism of ATPase-mediated Cu+ export and delivery to periplasmic chaperones: the interaction of Escherichia coli CopA and CusF. J Biol Chem 289:20492–20501PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Kim EH, Nies DH, McEvoy MM et al (2011) Switch or funnel: how RND-type transport systems control periplasmic metal homeostasis. J Bacteriol 193:2381–2387PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Long F, Su CC, Zimmermann MT et al (2010) Crystal structures of the CusA efflux pump suggest methionine-mediated metal transport. Nature 467:484–488PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Lei HT, Bolla JR, Bishop NR et al (2014) Crystal structures of CusC review conformational changes accompanying folding and transmembrane channel formation. J Mol Biol 426:403–411PubMedCrossRefGoogle Scholar
  62. 62.
    Su CC, Long F, Lei HT et al (2012) Charged amino acids (R83, E567, D617, E625, R669, and K678) of CusA are required for metal ion transport in the Cus efflux system. J Mol Biol 422:429–441PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Chacon KN, Mealman TD, McEvoy MM et al (2014) Tracking metal ions through a Cu/Ag efflux pump assigns the functional roles of the periplasmic proteins. Proc Natl Acad Sci U S A 111:15373–15378PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Patel SJ, Padilla-Benavides T, Collins JM et al (2014) Functional diversity of five homologous Cu+-ATPases present in Sinorhizobium meliloti. Microbiol 160:1237–1251CrossRefGoogle Scholar
  65. 65.
    Rademacher C, Masepohl B (2012) Copper-responsive gene regulation in bacteria. Microbiol 158:2451–2464Google Scholar
  66. 66.
    Giner-Lamia J, Lopez-Maury L, Reyes JC et al (2012) The CopRS two-component system is responsible for resistance to copper in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol 159:1806–1818PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Schelder S, Zaade D, Litsanov B et al (2011) The two-component signal transduction system CopRS of Corynebacterium glutamicum is required for adaptation to copper-excess stress. PLoS ONE 6:e22143PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Hu YH, Wang HL, Zhang M et al (2009) Molecular analysis of the copper-responsive CopRSCD of a pathogenic Pseudomonas fluorescens strain. J Microbiol 47:277–286PubMedCrossRefGoogle Scholar
  69. 69.
    Bansal-Mutalik R, Nikaido H (2014) Mycobacterial outer membrane is a lipid bilayer and the inner membrane is unusually rich in diacyl phosphatidylinositol dimannosides. Proc Natl Acad Sci U S A 111:4958–4963PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Speer A, Rowland JL, Haeili M et al (2013) Porins increase copper susceptibility of Mycobacterium tuberculosis. J Bacteriol 195:5133–5140PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Ward SK, Hoye EA, Talaat AM (2008) The global responses of Mycobacterium tuberculosis to physiological levels of copper. J Bacteriol 190:2939–2946PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Wolschendorf F, Ackart D, Shrestha TB et al (2011) Copper resistance is essential for virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 108:1621–1626PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Darwin KH (2015) Mycobacterium tuberculosis and copper: a newly appreciated defense against an old foe? J Biol Chem 290:18962–18966PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Fahey RC, Brown WC, Adams WB et al (1978) Occurrence of glutathione in bacteria. J Bacteriol 133:1126–1129PubMedPubMedCentralGoogle Scholar
  75. 75.
    Newton GL, Arnold K, Price MS et al (1996) Distribution of thiols in microorganisms: mycothiol is a major thiol in most actinomycetes. J Bacteriol 178:1990–1995PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Gaballa A, Newton GL, Antelmann H et al (2010) Biosynthesis and functions of bacillithiol, a major low-molecular-weight thiol in Bacilli. Proc Natl Acad Sci U S A 107:6482–6486PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Kim EK, Cha CJ, Cho YJ et al (2008) Synthesis of γ-glutamylcysteine as a major low-molecular-weight thiol in lactic acid bacteria Leuconostoc spp. Biochem Biophys Res Commun 369:1047–1051PubMedCrossRefGoogle Scholar
  78. 78.
    Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30:1191–1212PubMedCrossRefGoogle Scholar
  79. 79.
    Obeid MH, Oertel J, Solioz M et al (2016) Mechanism of attenuation of uranyl toxicity by glutathione in Lactococcus lactis. Appl Environ Microbiol 82:3563–3571PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Helbig K, Bleuel C, Krauss GJ et al (2008) Glutathione and transition-metal homeostasis in Escherichia coli. J Bacteriol 190:5431–5438PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Potter AJ, Trappetti C, Paton JC (2012) Streptococcus pneumoniae uses glutathione to defend against oxidative stress and metal ion toxicity. J Bacteriol 194:6248–6254PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Latinwo LM, Donald C, Ikediobi C et al (1998) Effects of intracellular glutathione on sensitivity of Escherichia coli to mercury and arsenite. Biochem Biophys Res Commun 242:67–70PubMedCrossRefGoogle Scholar
  83. 83.
    Vasak M, Meloni G (2011) Chemistry and biology of mammalian metallothioneins. J Biol Inorg Chem 16:1067–1078PubMedCrossRefGoogle Scholar
  84. 84.
    Huckle JW, Morby AP, Turner JS et al (1993) Isolation of a prokaryotic metallothionein locus and analysis of transcriptional control by trace metal ions. Mol Microbiol 7:177–187PubMedCrossRefGoogle Scholar
  85. 85.
    Gold B, Deng H, Bryk R et al (2008) Identification of a copper-binding metallothionein in pathogenic mycobacteria. Nat Chem Biol 4:609–616PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Vita N, Platsaki S, Basle A et al (2015) A four-helix bundle stores copper for methane oxidation. Nature 525:140–143PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Vita N, Landolfi G, Basle A et al (2016) Bacterial cytosolic proteins with a high capacity for Cu(I) that protect against copper toxicity. Sci Rep 6:39065PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Baslé A, Platsaki S, Dennison C (2017) Visualizing copper storage: the importance of thiolate-coordinated tetranuclear clusters. Angew Chem Int Ed Engl 56:8697–8700PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Rao NN, Gomez-Garcia MR, Kornberg A (2009) Inorganic polyphosphate: essential for growth and survival. Annu Rev Biochem 78:605–647PubMedCrossRefGoogle Scholar
  90. 90.
    Hashemi F, Leppard GG, Kushner DJ (1994) Copper resistance in Anabaena variabilis: effects of phosphate nutrition and polyphosphate bodies. Microb Ecol 27:159–176PubMedCrossRefGoogle Scholar
  91. 91.
    Keasling JD, Hupf GA (1996) Genetic manipulation of polyphosphate metabolism affects cadmium tolerance in Escherichia coli. Appl Microbiol Biotechnol 62:743–746Google Scholar
  92. 92.
    Keasling JD (1997) Regulation of intracellular toxic metals and other cations by hydrolysis of polyphosphate. Ann N Y Acad Sci 829:242–249PubMedCrossRefGoogle Scholar
  93. 93.
    Van Veen HW, Abee T, Kortstee GJ et al (1994) Generation of a proton motive force by the excretion of metal-phosphate in the polyphosphate-accumulating Acinetobacter johnsonii strain 210A. J Biol Chem 269:29509–29514PubMedGoogle Scholar
  94. 94.
    Grillo-Puertas M, Schurig-Briccio LA, Rodriguez-Montelongo L et al (2014) Copper tolerance mediated by polyphosphate degradation and low-affinity inorganic phosphate transport system in Escherichia coli. BMC Microbiol 14:72PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Alvarez S, Jerez CA (2004) Copper ions stimulate polyphosphate degradation and phosphate efflux in Acidithiobacillus ferrooxidans. Appl Environ Microbiol 70:5177–5182PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Remonsellez F, Orell A, Jerez CA (2006) Copper tolerance of the thermoacidophilic archaeon Sulfolobus metallicus: possible role of polyphosphate metabolism. Microbiol 152:59–66CrossRefGoogle Scholar
  97. 97.
    Scheuring S, Nevo R, Liu LN et al (2014) The architecture of Rhodobacter sphaeroides chromatophores. Biochim Biophys Acta 1837:1263–1270PubMedCrossRefGoogle Scholar
  98. 98.
    Stolle P, Hou B, Brüser T (2016) The Tat substrate CueO Is transported in an incomplete folding state. J Biol Chem 291:13520–13528PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Osman D, Patterson CJ, Bailey K et al (2013) The copper supply pathway to a Salmonella Cu, Zn-superoxide dismutase (SodCII) involves P1B-type ATPase copper-efflux and periplasmic CueP. Mol Microbiol 87:466–477PubMedCrossRefGoogle Scholar
  100. 100.
    Pontel LB, Audero ME, Espariz M et al (2007) GolS controls the response to gold by the hierarchical induction of Salmonella-specific genes that include a CBA efflux-coding operon. Mol Microbiol 66:814–825PubMedCrossRefGoogle Scholar
  101. 101.
    Checa SK, Espariz M, Audero ME et al (2007) Bacterial sensing of and resistance to gold salts. Mol Microbiol 63:1307–1318PubMedCrossRefGoogle Scholar
  102. 102.
    Osman D, Waldron KJ, Denton H et al (2010) Copper homeostasis in Salmonella is atypical and copper-CueP is a major periplasmic metal complex. J Biol Chem 285:25259–25268PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Yoon BY, Kim YH, Kim N et al (2013) Structure of the periplasmic copper-binding protein CueP from Salmonella enterica serovar Typhimurium. Acta Crystallogr D Biol Crystallogr 69:1867–1875PubMedCrossRefGoogle Scholar
  104. 104.
    Brzezinski P, Gennis RB (2008) Cytochrome c oxidase: exciting progress and remaining mysteries. J Bioenerg Biomembr 40:521–531PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Solioz M (2018) Copper and bacteria. Elsevier, AmsterdamCrossRefGoogle Scholar
  106. 106.
    Raimunda D, Padilla-Benavides T, Vogt S et al (2013) Periplasmic response upon disruption of transmembrane Cu transport in Pseudomonas aeruginosa. Metallomics 5:144–151PubMedCrossRefGoogle Scholar
  107. 107.
    Raimunda D, Gonzalez-Guerrero M, Leeber BW III et al (2011) The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function. Biometals 24:467–475PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Gonzalez-Guerrero M, Raimunda D, Cheng X et al (2010) Distinct functional roles of homologous Cu+ efflux ATPases in Pseudomonas aeruginosa. Mol Microbiol 78:1246–1258PubMedCrossRefGoogle Scholar
  109. 109.
    Buhler D, Rossmann R, Landolt S et al (2010) Disparate pathways for the biogenesis of cytochrome oxidases in Bradyrhizobium japonicum. J Biol Chem 285:15704–15713PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Gurumoorthy P, Ludwig B (2015) Deciphering protein-protein interactions during the biogenesis of cytochrome c oxidase from Paracoccus denitrificans. FEBS J 282:537–549PubMedCrossRefGoogle Scholar
  111. 111.
    Carr HS, Maxfield AB, Horng YC et al (2005) Functional analysis of the domains in Cox11. J Biol Chem 280:22664–22669PubMedCrossRefGoogle Scholar
  112. 112.
    Banci L, Bertini I, Cantini F et al (2004) Solution structure of Cox11, a novel type of beta-immunoglobulin-like fold involved in CuB site formation of cytochrome c oxidase. J Biol Chem 279:34833–34839PubMedCrossRefGoogle Scholar
  113. 113.
    Thompson AK, Smith D, Gray J et al (2010) Mutagenic analysis of Cox11 of Rhodobacter sphaeroides: insights into the assembly of Cu(B) of cytochrome c oxidase. Biochemistry 49:5651–5661PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Horng YC, Cobine PA, Maxfield AB et al (2004) Specific copper transfer from the Cox17 metallochaperone to both Sco1 and Cox11 in the assembly of yeast cytochrome C oxidase. J Biol Chem 279:35334–35340PubMedCrossRefGoogle Scholar
  115. 115.
    Balatri E, Banci L, Bertini I et al (2003) Solution structure of Sco1: a thioredoxin-like protein Involved in cytochrome c oxidase assembly. Structure 11:1431–1443PubMedCrossRefGoogle Scholar
  116. 116.
    Lohmeyer E, Schroder S, Pawlik G et al (2012) The ScoI homologue SenC is a copper binding protein that interacts directly with the cbb3-type cytochrome oxidase in Rhodobacter capsulata. Biochim Biophys Acta 1817:2005–2015PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Thompson AK, Gray J, Liu A et al (2012) The roles of Rhodobacter sphaeroides copper chaperones PCu(A)C and Sco (PrrC) in the assembly of the copper centers of the aa(3)-type and the cbb(3)-type cytochrome c oxidases. Biochim Biophys Acta 1817:955–964PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Serventi F, Youard ZA, Murset V et al (2012) Copper starvation-inducible protein for cytochrome oxidase biogenesis in Bradyrhizobium japonicum. J Biol Chem 287:38812–38823PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Trasnea PI, Utz M, Khalfaoui-Hassani B et al (2016) Cooperation between two periplasmic copper chaperones is required for full activity of the cbb -type cytochrome c oxidase and copper homeostasis in Rhodobacter capsulatus. Mol Microbiol 100:345–361PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Banci L, Bertini I, Ciofi-Baffoni S et al (2005) A copper(I) protein possibly involved in the assembly of CuA center of bacterial cytochrome c oxidase. Proc Natl Acad Sci U. S. A 102:3994–3999PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Abriata LA, Banci L, Bertini I et al (2008) Mechanism of Cu(A) assembly. Nat Chem Biol 4:599–601PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Abicht HK, Scharer MA, Quade N et al (2014) How periplasmic thioredoxin TlpA reduces bacterial copper chaperone ScoI and cytochrome oxidase subunit II (CoxB) prior to metallation. J Biol Chem 289:32431–32444PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Tottey S, Waldron KJ, Firbank SJ et al (2008) Protein-folding location can regulate manganese-binding versus copper- or zinc-binding. Nature 455:1138–1142PubMedCrossRefGoogle Scholar
  124. 124.
    Waldron KJ, Firbank SJ, Dainty SJ et al (2010) Structure and metal-loading of a soluble periplasm cupro-protein. J Biol Chem 285:32504–32511PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Rast A, Heinz S, Nickelsen J (2015) Biogenesis of thylakoid membranes. Biochim Biophys Acta 1847:821–830PubMedCrossRefGoogle Scholar
  126. 126.
    Frain KM, Gangl D, Jones A et al (2016) Protein translocation and thylakoid biogenesis in cyanobacteria. Biochim Biophys Acta 1857:266–273PubMedCrossRefGoogle Scholar
  127. 127.
    Rexroth S, Mullineaux CW, Ellinger D et al (2011) The plasma membrane of the cyanobacterium Gloeobacter violaceus contains segregated bioenergetic domains. Plant Cell 23:2379–2390PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Scanlan J, Dumont MG, Murrell JC (2009) Involvement of MmoR and MmoG in the transcriptional activation of soluble methane monooxygenase genes in Methylosinus trichosporium OB3b. FEMS Microbiol Lett 301:181–187PubMedCrossRefGoogle Scholar
  129. 129.
    Semrau JD, Jagadevan S, DiSpirito AA et al (2013) Methanobactin and MmoD work in concert to act as the ‘copper-switch’ in methanotrophs. Environ Microbiol 15:377–386Google Scholar
  130. 130.
    Kenney GE, Sadek M, Rosenzweig AC (2016) Copper-responsive gene expression in the methanotroph Methylosinus trichosporium OB3b. Metallomics 8:931–940PubMedCrossRefGoogle Scholar
  131. 131.
    Fox PL (2003) The copper-iron chronicles: the story of an intimate relationship. Biometals 16:9–40PubMedCrossRefGoogle Scholar
  132. 132.
    Sazinsky MH, LeMoine B, Orofino M et al (2007) Characterization and structure of a Zn2+ and [2Fe-2S]-containing copper chaperone from Archaeoglobus fulgidus. J Biol Chem 282:25950–25959PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Schwarz G, Mendel RR (2006) Molybdenum cofactor biosynthesis and molybdenum enzymes. Annu Rev Plant Biol 57:623–647PubMedCrossRefGoogle Scholar
  134. 134.
    Kuper J, Llamas A, Hecht HJ et al (2004) Structure of the molybdopterin-bound Cnx1G domain links molybdenum and copper metabolism. Nature 430:803–806PubMedCrossRefGoogle Scholar
  135. 135.
    Iobbi-Nivol C, Leimkuhler S (2013) Molybdenum enzymes, their maturation and molybdenum cofactor biosynthesis in Escherichia coli. Biochim Biophys Acta 1827:1086–1101PubMedCrossRefGoogle Scholar
  136. 136.
    Morrison MS, Cobine PA, Hegg EL (2007) Probing the role of copper in the biosynthesis of the molybdenum cofactor in Escherichia coli and Rhodobacter sphaeroides. J Biol Inorg Chem 12:1129–1139PubMedCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department Clinical ResearchUniversity of BernBernSwitzerland

Personalised recommendations