Skip to main content

Hybrid Materials and Systems

  • Chapter
  • First Online:
Polymers from Fossil and Renewable Resources
  • 435 Accesses

Abstract

Plastics were investigated based on homopolymers, which are polymers consisting of macromolecules characterized by the uniform chemical structure along the main chain, the successive investigation and related discovery demonstrated that the plastics’ behaviour could be reached with more complex systems in terms of molecular structure and composition. Successively copolymers consisting of macromolecules based on two different monomers have offered a possibility for designing plastics with a broader spectrum of properties. Going from molecular differentiation towards structural complexity, the mixing of polymers having different structures and thus different properties has provided a helpful tool to obtain materials with unique ultimate features, which are not characteristic of pristine macromolecules alone. At the same time, the dispersion in a polymer matrix of fillers having different aspect ratios (fibres, particles, lamellae) and dimensions (micro- and nanostructured fillers) can improve the thermo-mechanical properties or/and impart completely new properties, as example the barrier property, depending on the morphologies and dispersion level as well as on the interfacial interactions degrees. In fact, the blending procedure (between polymers or between polymer and filler) is effective only if proper interfacial interactions can be granted through the presence of specific functionalities. These latter can be naturally present onto both man-made and natural-made polymers or have to be inserted/anchored to the polymer backbone by post-reactor modification procedures. Therefore, this chapter summarizes the most important chemical post-modification procedures of polymers to prepare functionalized polymers or grafted copolymers suitable to act as compatibilizers , the main theoretical aspects of blending and the methodologies already get ready to provide composites and nanocomposites by using polymers from fossil, from renewable resources and even natural.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasian, M., Shahparian, M., Esmaeily, S., & Bonab, S. (2013). Iranian Polymer Journal, 22(804), 209–218.

    Article  CAS  Google Scholar 

  • Coleman, M. M., Serman, C. J., Bhagwagar, D. E., & Painter, P. C. (1990). A practical guide to polymer miscibility. Polymer, 31(7), 1187–1203.

    Article  CAS  Google Scholar 

  • Coltelli M.-B., Coiai S., & Bronco S. Passaglia E. (2010). Nanocomposites based on phyllosilicates: From petrochemicals to renewable thermoplastic matrices, in Advanced Nanomaterials. Ed. by Kurt E. Geckeler & Hiroyuki Nishide, pp 403–456.

    Google Scholar 

  • Flory, P. J. (1953). Principles of polymer chemistry. New York: Cornell University Press.

    Google Scholar 

  • Fortea-Verdejo, M., Bumbaris, E., Burgstaller, C., Bismarck, A., & Lee, K.-Y. (2017). Plant fibre reinforced polymers: Where do we stand in terms of tensile properties? International Materials Reviews, 62(8), 441–464.

    Article  CAS  Google Scholar 

  • Gazzano, M., Mazzocchetti, L., Pizzoli, M., & Scandola, M. (2012). Crystal orientation switching in spherulites grown from miscible blends of poly(3-hydroxybutyrate) with cellulose tributyrate. Journal of Polymer Science Part B-Polymer Physics, 50(21), 1463–1473.

    Article  CAS  Google Scholar 

  • Goh, S. H. (2014). Miscible polymer blends. In L. A. Utracki & C. A. Wilkie (Eds.), Polymer blends handbook (pp. 1915–2151). Dordrecht: Springer, Netherlands.

    Google Scholar 

  • Hu, Y., Li, J. S., Yang, W. T., & Xu, F. J. (2013). Functionalized polymer film surfaces via surface initiated atom transfer radical polymerization. Thin Solid Films, 534, 325–333.

    Article  CAS  Google Scholar 

  • Imre, B., & Pukánszky, B. (2013). Compatibilization in bio-based and biodegradable polymer blends. European Polymer Journal, 49, 1215–1233.

    Article  CAS  Google Scholar 

  • Jawaid, M., el Kacem Qaiss, A., & Bouhfid, R. (2016). Nanoclay reinforced polymer composite. Natural fibre/nanoclay hybrid composites. Springer Science + Business Media Singapore.

    Google Scholar 

  • Namazi, H., & Dadkhah, A. (2010). Convenient method for preparation of hydrophobically modified starch nanocrystals with using fatty acids. Carbohydrate Polymers, 79, 731–737.

    Article  CAS  Google Scholar 

  • Ohno, K., Kayama, Y., Ladmiral, V., Fukuda, T., & Tsujii, Y. (2010). A versatile method of initiator fixation for surface-initiated living radical polymerization on polymeric substrates. Macromolecules, 43, 5569–5574.

    Article  CAS  Google Scholar 

  • Passaglia, E., Coiai, S., Cicogna, F., & Ciardelli, F. (2014). Some recent advances in polyolefin functionalization. Polymer International, 63, 12–21.

    Article  CAS  Google Scholar 

  • Roy, D., Semsarilar, M., Guthrie, J. T., & Perrier, S. (2009). Cellulose modification by polymer grafting: a review. Chemical Society Reviews, 38, 2046–2064.

    Google Scholar 

  • Saba, N., Jawaid, M., Othman, Y. A., & Paridah, M. T. (2016). A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Construction and Building Materials, 106, 149–159.

    Article  CAS  Google Scholar 

  • Sarath, C. C., Shanks, R. A., & Thomas, S. (2014). Chapter 1-Polymer blends. Nanostructured polymer blends (pp. 1–14). Oxford: William Andrew Publishing.

    Google Scholar 

  • Shah, D. U. (2013). Developing plant fibre composites for structural applications by optimising composite parameters: A critical review. Journal Materials Science, 48(18), 6083–6107.

    Article  CAS  Google Scholar 

  • Sugimoto, R., Kaneko, H., Saito, J., Kawahara, N., Matsuo, S., & Matsugi, T. (2014). Controlled radical polymerization with polyolefin macroinitiator: A convenient and versatile approach to polyolefin-based block and graft copolymers. Polymer Bulletin, 71, 1421–1431.

    Article  CAS  Google Scholar 

  • Utracki, L. A., Mukhopadhyay, P., & Gupta, R. K. (2014). Polymer blends: Introduction. In L. A. Utracki & C. A. Wilkie (Eds.), Polymer blends handbook (pp. 1915–2151). Dordrecht: Springer, Netherlands.

    Google Scholar 

  • Wei, Y., Cheng, F., Hou, G., & Sun, S. (2008). Amphiphilic cellulose: Surface activity and aqueous self-assembly into nano-sized polymeric micelles. Reactive & Functional Polymers, 68, 981–989.

    Article  CAS  Google Scholar 

  • Yua, L., Deana, K., & Li, L. (2006). Polymer blends and composites from renewable resources. Progress in Polymer Science, 31, 576–602.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Ciardelli .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ciardelli, F., Bertoldo, M., Bronco, S., Passaglia, E. (2019). Hybrid Materials and Systems. In: Polymers from Fossil and Renewable Resources. Springer, Cham. https://doi.org/10.1007/978-3-319-94434-0_6

Download citation

Publish with us

Policies and ethics