Skip to main content

When Is a Latin Square Based on a Group?

  • Chapter
  • First Online:
Book cover Orthogonal Latin Squares Based on Groups

Part of the book series: Developments in Mathematics ((DEVM,volume 57))

Abstract

A question that presents itself to us is, given a Latin square, is it isotopic to the Cayley table of a group? Several approaches have been proposed for answering this question, dating back to the 1800s. Some of the answers that we will present will be based on configurations in the given square or given bordered square, the quadrangle criterion for Cayley tables of quasigroups in general and its variants for loops, and the Thomsen condition characterizing Latin squares based on abelian groups. We will present the rectangle rule, a criterion for the normal multiplication table of a loop to be based on a group; and we will present approaches that are based on permuting rows and/or columns of the given square, or that treat rows and/or columns of the given square as permutations. Our emphasis will be on particular properties of Latin squares that characterize Latin squares based on groups. We will not emphasize algorithmic solutions, or algebraic properties of loops or quasigroups that characterize loops and quasigroups that are isotopic to groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aczél, J.: Kvázicsoportok–hálózatok–nomogramok. Mat. Lapok 15, 114–162 (1964)

    MathSciNet  Google Scholar 

  2. Aczél, J.: Quasigroups, nets and nomograms. Adv. Math. 1, 383–450 (1965)

    Article  MathSciNet  Google Scholar 

  3. Aczél, J.: Conditions for a loop to be a group and for a groupoid to be a semigroup. Amer. Math. Monthly 76, 547–549 (1969)

    Article  MathSciNet  Google Scholar 

  4. Albert, A.A.: Quasigroups I. Trans. Amer. Math. Soc. 54, 507–519 (1943)

    Article  Google Scholar 

  5. Bondesen, A.: Er det en gruppetavle? Nordisk Mat. Tidskr. 17, 132–136 (1969)

    MathSciNet  Google Scholar 

  6. Brandt, H.: Verallgemeinierung des Gruppenbegriffs. Math. Ann. 96, 360–366 (1927)

    Article  Google Scholar 

  7. Bruck, R.H.: A survey of binary systems. Springer-Verlag, Berlin-Göttingen-Heidelberg (1958)

    Book  Google Scholar 

  8. Burn, R.P.: Cayley tables and associativity. Math. Gaz. 62, 278–281 (1978)

    Article  MathSciNet  Google Scholar 

  9. Chein, O., Pflugfelder, H.O., Smith, J.D.H. (eds): Quasigroups and Loops: Theory and Applications. Sigma Series in Pure Math. 8, Heldermann Verlag, Berlin (1990)

    Google Scholar 

  10. Clifford, A.H., Preston, G.B.: The Algebraic Theory of Semigroups, Volume 1. American Math. Soc., Providence (1961)

    Google Scholar 

  11. Dénes, J., Keedwell, A.D.: Latin Squares: New Developments in the Theory and Applications. Annals of Discrete Mathematics 46, North Holland, Amsterdam (1991)

    Google Scholar 

  12. Dénes, J., Keedwell, A.D.: Latin Squares and Their Applications, 2nd. edn. North Holland, Amsterdam (2015)

    MATH  Google Scholar 

  13. Ferrero, G., Ferrero Cotti, C.C.: Come verificare la proprietà associativa. Boll. Unione Mat. Ital. (4) 11, 322–329 (1975)

    Google Scholar 

  14. Fiala, N.: Short identities implying a quasigroup is a loop or group. Quasigroups Related Systems 15, 263–271 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Ford, D., Johnson, K.W.: Determinants of Latin squares of order 8. Exp. Math. 5, 317–325 (1996)

    Article  MathSciNet  Google Scholar 

  16. Frolov, M.: Recherches sur les permutations carrées. J. Math. Spéc. (3) 4, 8–11 (1890)

    Google Scholar 

  17. Hammel, A.: Verifying the associative property for finite groups. Math. Teacher 61, 136–139 (1968)

    Google Scholar 

  18. Keedwell, A. D.: Tests for loop nuclei and a new criterion for a Latin square to be group-based. European J. Combin. 26, 111–116 (2005)

    Article  MathSciNet  Google Scholar 

  19. Keedwell, A. D.: Realizations of loops and groups defined by short identities. Comment. Math. Univ. Carolin. 50(3), 373–383 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Keedwell, A. D.: Corrigendum to “Realizations of loops and groups defined by short identities”. Comment. Math. Univ. Carolin. 50, 639–640 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Parker, F.D.: When is a loop a group? Amer. Math. Monthly 72, 765–766 (1965)

    Article  MathSciNet  Google Scholar 

  22. Pflugfelder, H.O.: Quasigroups and loops: introduction. Sigma Series in Pure Mathematics, 7, Heldermann Verlag, Berlin (1990)

    Google Scholar 

  23. Reidemeister, K.: Topoogische Frage der Differentialgeometrie, V, Gewebe und Gruppen. Math. Z. 29, 427–435 (1929)

    Article  Google Scholar 

  24. Siu, M.-K.: Which Latin squares are Cayley tables? Amer. Math. Monthly 98, 625–627 (1991)

    Article  MathSciNet  Google Scholar 

  25. Speiser, A.: Die Theorie der Gruppen von endlicher Ordnung, 2nd edn. Springer, Berlin (1927)

    MATH  Google Scholar 

  26. Suschkewitsch, A.: On a generalization of the associative law. Trans. Amer. Math. Soc. 31, 204–214 (1929)

    Article  MathSciNet  Google Scholar 

  27. Tecklenburg, H.: Latin squares and configuration axioms in affine planes. Ars Combin. 29, 33–47 (1990)

    MathSciNet  MATH  Google Scholar 

  28. Thomsen, G.: Topologische Fragen der Differentialgeometrie XII, Schnittepunktsätze in ebenen Gewebe. Abh. Math. Seminar Univ. Hambg. 7, 99–106 (1939)

    Article  Google Scholar 

  29. Wanless, I.M., Webb, B.S.: Small partial Latin squares that cannot be embedded in a Cayley table. Australas. J. Combin. 67(2), 352–363 (2017).

    MathSciNet  MATH  Google Scholar 

  30. Watson, D.: Condition for a loop to be a group. Amer. Math. Monthly 74, 843–844 (1967)

    Article  MathSciNet  Google Scholar 

  31. Zassenhaus, H.J.: The theory of groups. 2nd edn., Chelsea, New York (1958).

    MATH  Google Scholar 

  32. Zassenhaus, H.: What makes a loop a group? Amer. Math. Monthly 75, 139–142 (1968)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Evans, A.B. (2018). When Is a Latin Square Based on a Group?. In: Orthogonal Latin Squares Based on Groups. Developments in Mathematics, vol 57. Springer, Cham. https://doi.org/10.1007/978-3-319-94430-2_2

Download citation

Publish with us

Policies and ethics